Lambora Simran, Bhardwaj Asha
Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India.
ACS Omega. 2023 Jul 19;8(30):27725-27731. doi: 10.1021/acsomega.3c03478. eCollection 2023 Aug 1.
Morphology plays a crucial role in determining the chemical and optical properties of nanomaterials due to confinement effects. We report the morphology transition of colloidal molybdenum disulfide (MoS) nanostructures, synthesized by a one-pot heat-up method, from a mix of quantum dots (QDs) and nanosheets to predominantly nanorods by varying the synthesis reaction temperature from 90 to 160 °C. The stoichiometry and composition of the synthesized QDs, nanosheets, and nanorods were quantified to be MoS using energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy analyses. A nanostructure morphology transition due to variation in the reaction temperature resulted in a photoluminescence quantum yield enhancement from 0 to 4.4% on increasing the temperature from 90 to 120 °C. On further increase in the temperature to 160 °C, a decrease in the quantum yield to 3.06% is observed. Red-shifts of ≈18 and ≈140 nm in the emission maxima and absorption edge, respectively, are observed for the synthesized nanostructures with an increase in the reaction temperature from 90 to 160 °C. The change in the quantum yield is attributed to the change in shape and hence confinement of charge carriers. To the best of our knowledge, microscopic analysis of variation in shape and optical properties of colloidal MoS nanostructures with temperature, explained by a nonclassical growth mechanism is presented here for the first time.
由于量子限域效应,形貌在决定纳米材料的化学和光学性质方面起着至关重要的作用。我们报道了通过一锅加热法合成的胶体二硫化钼(MoS)纳米结构的形貌转变,通过将合成反应温度从90℃变化到160℃,其形貌从量子点(QD)和纳米片的混合物转变为主要是纳米棒。使用能量色散X射线光谱和X射线光电子能谱分析定量合成的量子点、纳米片和纳米棒的化学计量和组成,确定为MoS。由于反应温度变化导致的纳米结构形貌转变,使得在温度从90℃升高到120℃时,光致发光量子产率从0提高到4.4%。当温度进一步升高到160℃时,观察到量子产率降低到3.06%。随着反应温度从90℃升高到160℃,合成的纳米结构在发射最大值和吸收边缘分别观察到约18nm和约140nm的红移。量子产率的变化归因于形状的变化,从而归因于电荷载流子的限域。据我们所知,本文首次提出了用非经典生长机理解释的胶体MoS纳米结构的形状和光学性质随温度变化的微观分析。