Suppr超能文献

LigaNET:一种用于预测手术后后续前交叉韧带损伤风险的多模态深度学习方法。

LigaNET: A multi-modal deep learning approach to predict the risk of subsequent anterior cruciate ligament injury after surgery.

作者信息

Han Mo, Singh Mallika, Karimi Davood, Kim Jin-Young, Flannery Sean W, Ecklund Kirsten, Murray Martha M, Fleming Braden C, Gholipour Ali, Kiapour Ata M

机构信息

Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.

Department of Radiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.

出版信息

medRxiv. 2023 Jul 27:2023.07.25.23293102. doi: 10.1101/2023.07.25.23293102.

Abstract

Anterior cruciate ligament (ACL) injuries are a common cause of soft tissue injuries in young active individuals, leading to a significant risk of premature joint degeneration. Postoperative management of such injuries, in particular returning patients to athletic activities, is a challenge with immediate and long-term implications including the risk of subsequent injury. In this study, we present LigaNET, a multi-modal deep learning pipeline that predicts the risk of subsequent ACL injury following surgical treatment. Postoperative MRIs (n=1,762) obtained longitudinally between 3 to 24 months after ACL surgery from a cohort of 159 patients along with 11 non-imaging outcomes were used to train and test: 1) a 3D CNN to predict subsequent ACL injury from segmented ACLs, 2) a 3D CNN to predict injury from the whole MRI, 3) a logistic regression classifier predict injury from non-imaging data, and 4) a multi-modal pipeline by fusing the predictions of each classifier. The CNN using the segmented ACL achieved an accuracy of 77.6% and AUROC of 0.84, which was significantly better than the CNN using the whole knee MRI (accuracy: 66.6%, AUROC: 0.70; P<.001) and the non-imaging classifier (accuracy: 70.1%, AUROC: 0.75; P=.039). The fusion of all three classifiers resulted in highest classification performance (accuracy: 80.6%, AUROC: 0.89), which was significantly better than each individual classifier (P<.001). The developed multi-modal approach had similar performance in predicting the risk of subsequent ACL injury from any of the imaging sequences (P>.10). Our results demonstrate that a deep learning approach can achieve high performance in identifying patients at high risk of subsequent ACL injury after surgery and may be used in clinical decision making to improve postoperative management (e.g., safe return to sports) of ACL injured patients.

摘要

前交叉韧带(ACL)损伤是年轻活跃个体软组织损伤的常见原因,会导致关节过早退变的重大风险。此类损伤的术后管理,尤其是让患者恢复体育活动,是一项具有即时和长期影响的挑战,包括后续受伤的风险。在本研究中,我们展示了LigaNET,这是一种多模态深度学习管道,可预测手术治疗后后续ACL损伤的风险。对159名患者队列在ACL手术后3至24个月纵向获取的术后MRI(n = 1,762)以及11项非影像结果进行训练和测试:1)一个3D卷积神经网络(CNN),用于从分割的ACL预测后续ACL损伤;2)一个3D CNN,用于从整个MRI预测损伤;3)一个逻辑回归分类器,用于从非影像数据预测损伤;4)通过融合每个分类器的预测结果构建的多模态管道。使用分割的ACL的CNN实现了77.6%的准确率和0.84的曲线下面积(AUROC),显著优于使用整个膝关节MRI的CNN(准确率:66.6%,AUROC:0.70;P <.001)和非影像分类器(准确率:70.1%,AUROC:0.75;P =.039)。所有三个分类器的融合产生了最高的分类性能(准确率:80.6%,AUROC:0.89),显著优于每个单独的分类器(P <.001)。所开发的多模态方法在从任何影像序列预测后续ACL损伤风险方面具有相似的性能(P >.10)。我们的结果表明,深度学习方法在识别术后有后续ACL损伤高风险的患者方面可以实现高性能,并且可用于临床决策,以改善ACL损伤患者的术后管理(例如安全恢复运动)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e302/10402234/86bb81a4e13f/nihpp-2023.07.25.23293102v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验