Ray Katherine A, Lutgens Joshua D, Bista Ramesh, Zhang Jie, Desai Ronak R, Hirsch Melissa, Miyazawa Takeshi, Cordova Antonio, Keatinge-Clay Adrian T
Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX.
Department of Chemistry, The University of Texas at Austin, Austin, TX.
Res Sq. 2023 Jul 28:rs.3.rs-3157617. doi: 10.21203/rs.3.rs-3157617/v1.
The modular nature of polyketide assembly lines and the significance of their products make them prime targets for combinatorial engineering. While short synthases constructed using the recently updated module boundary have been shown to outperform those using the traditional boundary, larger synthases constructed using the updated boundary have not been investigated. Here we describe our design and implementation of a BioBricks-like platform to rapidly construct 5 triketide, 25 tetraketide, and 125 pentaketide synthases from the updated modules of the Pikromycin synthase. Every combinatorial possibility of modules 2-6 inserted between the first and last modules of the native synthase was constructed and assayed. Anticipated products were observed from 60% of the triketide synthases, 32% of the tetraketide synthases, and 6.4% of the pentaketide synthases. Ketosynthase gatekeeping and module-skipping were determined to be the principal impediments to obtaining functional synthases. The platform was also used to create functional hybrid synthases through the incorporation of modules from the Erythromycin, Spinosyn, and Rapamycin assembly lines. The relaxed gatekeeping observed from a ketosynthase in the Rapamycin synthase is especially encouraging in the quest to produce designer polyketides.
聚酮化合物装配线的模块化性质及其产物的重要性使其成为组合工程的主要目标。虽然使用最近更新的模块边界构建的短合成酶已被证明优于使用传统边界的合成酶,但使用更新边界构建的较大合成酶尚未得到研究。在此,我们描述了一个类似BioBricks的平台的设计与实施,该平台可利用匹克霉素合成酶的更新模块快速构建5种三酮合成酶、25种四酮合成酶和125种五酮合成酶。构建并检测了在天然合成酶的第一个和最后一个模块之间插入模块2 - 6的每种组合可能性。在60%的三酮合成酶、32%的四酮合成酶和6.4%的五酮合成酶中观察到了预期产物。酮合成酶的守门作用和模块跳跃被确定为获得功能性合成酶的主要障碍。该平台还通过整合来自红霉素、多杀菌素和雷帕霉素装配线的模块来创建功能性杂合合成酶。在雷帕霉素合成酶中观察到的酮合成酶的宽松守门作用,在生产定制聚酮化合物的探索中尤其令人鼓舞。