Suppr超能文献

一种基于图卷积网络(GCN)和长短期记忆网络(LSTM)的大学生双边就业形势预测模型。

A bilateral employment situation prediction model for college students using GCN and LSTM.

作者信息

Shen Junxia

机构信息

Employment Guidance Division, Luohe Medical College, Luohe, Henan, China.

出版信息

PeerJ Comput Sci. 2023 Aug 1;9:e1494. doi: 10.7717/peerj-cs.1494. eCollection 2023.

Abstract

Due to the prevailing trend of globalization, the competition for social employment has escalated significantly. Moreover, the job market has become exceedingly competitive for students, warranting immediate attention. In light of this, a novel prognostic model employing big data technology is proposed to facilitate a bilateral employment scenario for graduates, aiding college students in promptly gauging the prevailing social employment landscape and providing precise employment guidance. Initially, the focus lies in meticulously analyzing pivotal aspects of college students' employment by constructing a specialized employment platform. Subsequently, a classification model grounded in a graph convolution network (GCN) is built, leveraging big data technology to comprehensively comprehend graduates' strengths and weaknesses in the employment milieu. Furthermore, based on the outcomes derived from the comprehensive classification of college students' qualities, a college students' employment trend prediction method employing long and short term memory (LSTM) is proposed. This method supplements the analysis of graduates' employability and enables accurate forecasting of college students' employment trends. Empirical evidence substantiates that my proposed methodology effectively evaluates graduates' comprehensive qualities and successfully predicts their employment prospects. The achieved F-values, 82.45% and 69.89%, respectively, demonstrate the efficacy of anticipating the new paradigm in graduates' dual-line employment.

摘要

由于全球化的普遍趋势,社会就业竞争显著加剧。此外,就业市场对学生来说竞争变得异常激烈,这值得立即关注。鉴于此,提出一种采用大数据技术的新型预测模型,以促进毕业生的双向就业局面,帮助大学生迅速了解当前的社会就业形势并提供精准的就业指导。首先,重点在于通过构建一个专门的就业平台,细致分析大学生就业的关键方面。随后,基于图卷积网络(GCN)构建一个分类模型,利用大数据技术全面了解毕业生在就业环境中的优势和劣势。此外,基于大学生素质综合分类的结果,提出一种采用长短期记忆(LSTM)的大学生就业趋势预测方法。该方法补充了对毕业生就业能力的分析,并能准确预测大学生的就业趋势。实证证据证实,我提出的方法有效评估了毕业生的综合素质,并成功预测了他们的就业前景。分别达到的F值82.45%和69.89%,证明了预测毕业生双线就业新范式的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2176/10403180/a15522fc4bc9/peerj-cs-09-1494-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验