Bian Wanyu, Jang Albert, Liu Fang
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 USA.
ArXiv. 2023 Jul 25:arXiv:2307.13211v1.
This paper proposes a novel self-supervised learning method, RELAX-MORE, for quantitative MRI (qMRI) reconstruction. The proposed method uses an optimization algorithm to unroll a model-based qMRI reconstruction into a deep learning framework, enabling the generation of highly accurate and robust MR parameter maps at imaging acceleration. Unlike conventional deep learning methods requiring a large amount of training data, RELAX-MORE is a subject-specific method that can be trained on single-subject data through self-supervised learning, making it accessible and practically applicable to many qMRI studies. Using the quantitative mapping as an example at different brain, knee and phantom experiments, the proposed method demonstrates excellent performance in reconstructing MR parameters, correcting imaging artifacts, removing noises, and recovering image features at imperfect imaging conditions. Compared with other state-of-the-art conventional and deep learning methods, RELAX-MORE significantly improves efficiency, accuracy, robustness, and generalizability for rapid MR parameter mapping. This work demonstrates the feasibility of a new self-supervised learning method for rapid MR parameter mapping, with great potential to enhance the clinical translation of qMRI.
本文提出了一种用于定量磁共振成像(qMRI)重建的新型自监督学习方法RELAX-MORE。该方法使用一种优化算法,将基于模型的qMRI重建展开为深度学习框架,从而能够在成像加速的情况下生成高精度且稳健的磁共振参数图。与需要大量训练数据的传统深度学习方法不同,RELAX-MORE是一种针对特定个体的方法,可通过自监督学习在单个体数据上进行训练,使其适用于许多qMRI研究并具有实际应用价值。以不同脑、膝盖和体模实验中的定量映射为例,该方法在重建磁共振参数、校正成像伪影、去除噪声以及在不完美成像条件下恢复图像特征方面表现出优异性能。与其他先进的传统和深度学习方法相比,RELAX-MORE在快速磁共振参数映射方面显著提高了效率、准确性、稳健性和通用性。这项工作证明了一种用于快速磁共振参数映射的新型自监督学习方法的可行性,具有极大潜力增强qMRI的临床转化。