Alshahrani Mohammed, Parikh Vedant, Foley Brandon, Verkhivker Gennady
Keck Center for Science and Engineering, Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA.
Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA.
Viruses. 2025 Jul 23;17(8):1029. doi: 10.3390/v17081029.
The rapid evolution of SARS-CoV-2 has underscored the need for a detailed understanding of antibody binding mechanisms to combat immune evasion by emerging variants. In this study, we investigated the interactions between Class I neutralizing antibodies-BD55-1205, BD-604, OMI-42, P5S-1H1, and P5S-2B10-and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein using multiscale modeling, which combined molecular simulations with the ensemble-based mutational scanning of the binding interfaces and binding free energy computations. A central theme emerging from this work is that the unique binding strength and resilience to immune escape of the BD55-1205 antibody are determined by leveraging a broad epitope footprint and distributed hotspot architecture, additionally supported by backbone-mediated specific interactions, which are less sensitive to amino acid substitutions and together enable exceptional tolerance to mutational escape. In contrast, BD-604 and OMI-42 exhibit localized binding modes with strong dependence on side-chain interactions, rendering them particularly vulnerable to escape mutations at K417N, L455M, F456L and A475V. Similarly, P5S-1H1 and P5S-2B10 display intermediate behavior-effective in some contexts but increasingly susceptible to antigenic drift due to narrower epitope coverage and concentrated hotspots. Our computational predictions show strong agreement with experimental deep mutational scanning data, validating the accuracy of the models and reinforcing the value of binding hotspot mapping in predicting antibody vulnerability. This work highlights that neutralization breadth and durability are not solely dictated by epitope location, but also by how binding energy is distributed across the interface. The results provide atomistic insight into mechanisms driving resilience to immune escape for broadly neutralizing antibodies targeting the ACE2 binding interface-which stems from cumulative effects of structural diversity in binding contacts, redundancy in interaction patterns and reduced vulnerability to mutation-prone positions.
严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的快速进化凸显了详细了解抗体结合机制以对抗新出现变体免疫逃逸的必要性。在本研究中,我们使用多尺度建模方法研究了I类中和抗体——BD55-1205、BD-604、OMI-42、P5S-1H1和P5S-2B10——与SARS-CoV-2刺突蛋白受体结合域(RBD)之间的相互作用,该方法将分子模拟与基于整体的结合界面突变扫描和结合自由能计算相结合。这项工作中出现的一个核心主题是,BD55-1205抗体独特的结合强度和对免疫逃逸的抵抗力是通过利用广泛的表位足迹和分布的热点结构来决定的,此外还得到主链介导的特异性相互作用的支持,这些相互作用对氨基酸取代不太敏感,共同使得对突变逃逸具有非凡的耐受性。相比之下,BD-604和OMI-42表现出局部结合模式,强烈依赖侧链相互作用,这使得它们特别容易受到K417N、L455M、F456L和A475V处逃逸突变的影响。同样,P5S-1H1和P5S-2B10表现出中间行为——在某些情况下有效,但由于表位覆盖范围较窄和热点集中,越来越容易受到抗原漂移的影响。我们的计算预测与实验深度突变扫描数据高度一致,验证了模型的准确性,并加强了结合热点图谱在预测抗体易感性方面的价值。这项工作强调,中和广度和持久性不仅由表位位置决定,还由结合能在界面上的分布方式决定。结果提供了原子水平的见解,揭示了针对ACE2结合界面的广泛中和抗体对免疫逃逸具有抵抗力的机制——这源于结合接触中结构多样性的累积效应、相互作用模式的冗余以及对易突变位置的易感性降低。