Suppr超能文献

多腔室血管化人心肌类器官中的电代谢偶联。

Electro-metabolic coupling in multi-chambered vascularized human cardiac organoids.

机构信息

Alexander Grass Center for Bioengineering, The Hebrew University of Jerusalem, Jerusalem, Israel.

The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

Nat Biomed Eng. 2023 Nov;7(11):1493-1513. doi: 10.1038/s41551-023-01071-9. Epub 2023 Aug 7.

Abstract

The study of cardiac physiology is hindered by physiological differences between humans and small-animal models. Here we report the generation of multi-chambered self-paced vascularized human cardiac organoids formed under anisotropic stress and their applicability to the study of cardiac arrhythmia. Sensors embedded in the cardiac organoids enabled the simultaneous measurement of oxygen uptake, extracellular field potentials and cardiac contraction at resolutions higher than 10 Hz. This microphysiological system revealed 1 Hz cardiac respiratory cycles that are coupled to the electrical rather than the mechanical activity of cardiomyocytes. This electro-mitochondrial coupling was driven by mitochondrial calcium oscillations driving respiration cycles. Pharmaceutical or genetic inhibition of this coupling results in arrhythmogenic behaviour. We show that the chemotherapeutic mitoxantrone induces arrhythmia through disruption of this pathway, a process that can be partially reversed by the co-administration of metformin. Our microphysiological cardiac systems may further facilitate the study of the mitochondrial dynamics of cardiac rhythms and advance our understanding of human cardiac physiology.

摘要

心脏生理学的研究受到人类和小动物模型之间生理差异的阻碍。在这里,我们报告了多腔室自步血管化人心肌类器官的产生,这些类器官在各向异性应力下形成,并可用于研究心律失常。嵌入在心脏类器官中的传感器能够以高于 10 Hz 的分辨率同时测量耗氧量、细胞外场电位和心脏收缩。这个微生理系统揭示了与心肌细胞的电活动而非机械活动偶联的 1 Hz 心脏呼吸周期。这种电-线粒体偶联是由线粒体钙振荡驱动呼吸周期驱动的。通过抑制这种偶联的药物或基因抑制会导致心律失常。我们表明,化疗药物米托蒽醌通过破坏这条途径引起心律失常,这个过程可以通过联合使用二甲双胍部分逆转。我们的微生理心脏系统可能进一步促进对心脏节律中线粒体动力学的研究,并增进我们对人类心脏生理学的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验