用于胰腺瘘风险因素建模与识别的机器学习

Machine learning for modeling and identifying risk factors of pancreatic fistula.

作者信息

Potievskiy Mikhail B, Petrov Leonid O, Ivanov Sergei A, Sokolov Pavel V, Trifanov Vladimir S, Grishin Nikolai A, Moshurov Ruslan I, Shegai Peter V, Kaprin Andrei D

机构信息

Center for Clinical Trials, Center for Innovative Radiological and Regenerative Technologies, FSBI "National Medical Research Radiological Center" of the Ministry of Health of the Russian Federation, Obninsk 249036, Kaluzhskaya Oblast, Russia.

Department of Radiation and Surgical Treatment of Abdominal Diseases, A. Tsyb Medical Radiological Center, FSBI "National Medical Research Radiological Center" of the Ministry of Health of the Russian Federation, Obninsk 249036, Kaluzhskaya Oblast, Russia.

出版信息

World J Gastrointest Oncol. 2025 Apr 15;17(4):100089. doi: 10.4251/wjgo.v17.i4.100089.

Abstract

BACKGROUND

Pancreatic fistula is the most common complication of pancreatic surgeries that causes more serious conditions, including bleeding due to visceral vessel erosion and peritonitis.

AIM

To develop a machine learning (ML) model for postoperative pancreatic fistula and identify significant risk factors of the complication.

METHODS

A single-center retrospective clinical study was conducted which included 150 patients, who underwent pancreatoduodenectomy. Logistic regression, random forest, and CatBoost were employed for modeling the biochemical leak (symptomless fistula) and fistula grade B/C (clinically significant complication). The performance was estimated by receiver operating characteristic (ROC) area under the curve (AUC) after 5-fold cross-validation (20% testing and 80% training data). The risk factors were evaluated with the most accurate algorithm, based on the parameter "Importance" (Im), and Kendall correlation, < 0.05.

RESULTS

The CatBoost algorithm was the most accurate with an AUC of 74%-86%. The study provided results of ML-based modeling and algorithm selection for pancreatic fistula prediction and risk factor evaluation. From 14 parameters we selected the main pre- and intraoperative prognostic factors of all the fistulas: Tumor vascular invasion (Im = 24.8%), age (Im = 18.6%), and body mass index (Im = 16.4%), AUC = 74%. The ML model showed that biochemical leak, blood and drain amylase level (Im = 21.6% and 16.4%), and blood leukocytes (Im = 11.2%) were crucial predictors for subsequent fistula B/C, AUC = 86%. Surgical techniques, morphology, and pancreatic duct diameter less than 3 mm were insignificant (Im < 5% and no correlations detected). The results were confirmed by correlation analysis.

CONCLUSION

This study highlights the key predictors of postoperative pancreatic fistula and establishes a robust ML-based model for individualized risk prediction. These findings contribute to the advancement of personalized perioperative care and may guide targeted preventive strategies.

摘要

背景

胰瘘是胰腺手术最常见的并发症,可导致更严重的情况,包括因内脏血管侵蚀引起的出血和腹膜炎。

目的

开发一种用于术后胰瘘的机器学习(ML)模型,并确定该并发症的重要危险因素。

方法

进行了一项单中心回顾性临床研究,纳入了150例行胰十二指肠切除术的患者。采用逻辑回归、随机森林和CatBoost对生化漏(无症状瘘)和B/C级瘘(临床显著并发症)进行建模。在5折交叉验证(20%测试数据和80%训练数据)后,通过受试者操作特征(ROC)曲线下面积(AUC)评估模型性能。基于“重要性”(Im)参数和肯德尔相关性(<0.05),使用最准确的算法评估危险因素。

结果

CatBoost算法最为准确,AUC为74%-86%。该研究提供了基于ML的建模结果以及用于胰瘘预测和危险因素评估的算法选择。从14个参数中,我们选择了所有瘘的主要术前和术中预后因素:肿瘤血管侵犯(Im = 24.8%)、年龄(Im = 18.6%)和体重指数(Im = 16.4%),AUC = 74%。ML模型显示,生化漏、血液和引流液淀粉酶水平(Im = 21.6%和16.4%)以及血液白细胞(Im = 11.2%)是后续B/C级瘘的关键预测因素,AUC = 86%。手术技术、形态以及胰管直径小于3 mm不显著(Im < 5%且未检测到相关性)。相关性分析证实了结果。

结论

本研究突出了术后胰瘘的关键预测因素,并建立了一个强大的基于ML的个性化风险预测模型。这些发现有助于推进个性化围手术期护理,并可能指导有针对性的预防策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26bc/11995311/9a891347e585/100089-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索