Suppr超能文献

如何以及为何遵循针对缺失数据检验中介模型的最佳实践。

How and why to follow best practices for testing mediation models with missing data.

作者信息

Schoemann Alexander M, Moore E Whitney G, Yagiz Gokhan

机构信息

Department of Psychology, East Carolina University, Greenville, NC, USA.

Department of Kinesiology, East Carolina University, Greenville, NC, USA.

出版信息

Int J Psychol. 2025 Feb;60(1):e13257. doi: 10.1002/ijop.13257. Epub 2024 Oct 17.

Abstract

Mediation models are often conducted in psychology to understand mechanisms and processes of change. However, current best practices for handling missing data in mediation models are not always used by researchers. Missing data methods, such as full information maximum likelihood (FIML) and multiple imputation (MI), are best practice methods of handling missing data. However, FIML or MI are rarely used to handle missing data when testing mediation models, instead analyses used listwise deletion methods, the default in popular software. Compared to listwise deletion, the implementation of FIML or MI to handle missing data reduces parameter estimate bias, while maintaining the sample collected to maximise power and generalizability of results. In this tutorial, we review how to implement full-information maximum likelihood and MI using best practice methods of testing the indirect effect. We demonstrate how to implement these methods using both R and JASP, which are both free, open-source software programmes and provide online supplemental materials for these demonstrations. These methods are demonstrated using two example analyses, one using a cross-sectional mediation model and one using a longitudinal mediation model examining how student-athletes reported worry about COVID predicts their perceived stress, which in turn predicts satisfaction with life.

摘要

中介模型常用于心理学领域,以理解变化的机制和过程。然而,研究人员在中介模型中处理缺失数据时,并不总是采用当前的最佳实践方法。缺失数据处理方法,如完全信息最大似然法(FIML)和多重填补法(MI),是处理缺失数据的最佳实践方法。然而,在检验中介模型时,很少使用FIML或MI来处理缺失数据,相反,分析使用的是逐行删除法,这是流行软件中的默认方法。与逐行删除相比,使用FIML或MI处理缺失数据可以减少参数估计偏差,同时保留所收集的样本,以最大化结果的效力和普遍性。在本教程中,我们将回顾如何使用检验间接效应的最佳实践方法来实施完全信息最大似然法和多重填补法。我们将展示如何使用R和JASP这两种免费的开源软件程序来实施这些方法,并为这些演示提供在线补充材料。通过两个示例分析来演示这些方法,一个使用横断面中介模型,另一个使用纵向中介模型,研究学生运动员报告的对新冠病毒的担忧如何预测他们的感知压力,而感知压力又如何预测生活满意度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9af/11625877/4de953955ef9/IJOP-60-e13257-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验