Gamberini Agnese, Burton Tobias, Ladam Alix, Bagheri Ahmad, Abruzzese Matteo, Beydaghi Hossein, Mastronardi Valentina, Calcagno Elena, Vaez Samaneh, Morenghi Alberto, Gatti Teresa, Falgayrat Anais, Bonaccorso Francesco, Fantini Sebastien, Bellani Sebastiano
BeDimensional S.p.A., via Lungotorrente Secca 30R, 16163, Genova, Italy.
Solvionic, 11 Chemin des Silos, 31100, Toulouse, France.
ChemSusChem. 2025 May 19;18(10):e202401874. doi: 10.1002/cssc.202401874. Epub 2025 Mar 6.
The design of interfaces between nanostructured electrodes and advanced electrolytes is critical for realizing advanced electrochemical double-layer capacitors (EDLCs) that combine high charge-storage capacity, high-rate capability, and enhanced safety. Toward this goal, this work presents a novel and sustainable approach for fabricating ionogel-based electrodes using a renewed slurry casting method, in which the solvent is replaced by the ionic liquid (IL), namely 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMIFSI). This method avoids time-consuming and costly electrolyte-filling steps by integrating the IL directly into the electrode during slurry preparation, while improving the rate capability of EDLCs based on pure non-flammable ILs. The resulting ionogel electrodes demonstrate exceptional electrolyte accessibility and enable the production of symmetric EDLCs with high energy density (over 30 Wh kg based on electrode material weight) and high-rate performance. These EDLCs could operate at temperatures up to 180 °C, far exceeding the limitations of traditional EDLCs based on organic electrolytes (e. g., 1 M TEABF in acetonitrile, up to 65 °C). Ionogel-type EDLCs exhibit remarkable long-term stability, retaining 88 % specific capacity after 10000 galvanostatic charge/discharge cycles at 10 A g and demonstrating superior retention compared to conventional EDLCs (50 %), while also maintaining 92.4 % energy density during 100 h floating tests at 2.7 V. These electrochemical properties highlight their potential for robust performance under demanding conditions. This study highpoints the practical potential of ionogel-based electrodes to advance IL-based EDLC technology, paving the way for next-generation energy storage devices with high-temperature and high-voltage operational capabilities.
纳米结构电极与先进电解质之间界面的设计对于实现兼具高电荷存储容量、高倍率性能和增强安全性的先进电化学双层电容器(EDLC)至关重要。为实现这一目标,本工作提出了一种新颖且可持续的方法,即使用改进的浆料浇铸法制备基于离子凝胶的电极,其中溶剂被离子液体(IL),即1-乙基-3-甲基咪唑双(氟磺酰)亚胺(EMIFSI)所取代。该方法通过在浆料制备过程中将离子液体直接整合到电极中,避免了耗时且昂贵的电解质填充步骤,同时提高了基于纯不可燃离子液体的EDLC的倍率性能。所得的离子凝胶电极表现出优异的电解质可及性,并能够生产具有高能量密度(基于电极材料重量超过30 Wh kg)和高倍率性能的对称EDLC。这些EDLC可在高达180°C的温度下运行,远远超过了基于有机电解质的传统EDLC的限制(例如,乙腈中的1 M TEABF,最高65°C)。离子凝胶型EDLC表现出显著的长期稳定性,在10 A g下进行10000次恒电流充放电循环后保留88%的比容量,与传统EDLC(50%)相比表现出卓越的保留率,同时在2.7 V下进行100 h浮充测试期间也保持92.4%的能量密度。这些电化学性能突出了它们在苛刻条件下实现稳健性能的潜力。本研究强调了基于离子凝胶的电极在推进基于离子液体的EDLC技术方面的实际潜力,为具有高温和高压运行能力的下一代储能装置铺平了道路。