DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy.
J Chem Inf Model. 2024 Apr 8;64(7):2143-2149. doi: 10.1021/acs.jcim.3c00647. Epub 2023 Aug 8.
The present contribution introduces a novel computational protocol called PyRMD2Dock, which combines the Ligand-Based Virtual Screening (LBVS) tool PyRMD with the popular docking software AutoDock-GPU (AD4-GPU) to enhance the throughput of virtual screening campaigns for drug discovery. By implementing PyRMD2Dock, we demonstrate that it is possible to rapidly screen massive chemical databases and identify those with the highest predicted binding affinity to a target protein. Our benchmarking and screening experiments illustrate the predictive power and speed of PyRMD2Dock and highlight its potential to accelerate the discovery of novel drug candidates. Overall, this study showcases the value of combining AI-powered LBVS tools with docking software to enable effective and high-throughput virtual screening of ultralarge molecular databases in drug discovery. PyRMD and the PyRMD2Dock protocol are freely available on GitHub (https://github.com/cosconatilab/PyRMD) as an open-source tool.
本研究提出了一种名为 PyRMD2Dock 的新型计算方案,它结合了基于配体的虚拟筛选工具 PyRMD 和流行的对接软件 AutoDock-GPU(AD4-GPU),以提高药物发现虚拟筛选工作的通量。通过实施 PyRMD2Dock,我们证明了快速筛选大规模化学数据库并识别与靶标蛋白具有最高预测结合亲和力的化合物是可行的。我们的基准测试和筛选实验说明了 PyRMD2Dock 的预测能力和速度,并强调了它在加速新型候选药物发现方面的潜力。总的来说,这项研究展示了将人工智能驱动的基于配体的虚拟筛选工具与对接软件相结合,以实现药物发现中超大规模分子数据库的有效和高通量虚拟筛选的价值。PyRMD 和 PyRMD2Dock 协议可在 GitHub(https://github.com/cosconatilab/PyRMD)上免费获取,作为一个开源工具。