Suppr超能文献

用人工智能简化大型化学文库对接:PyRMD2Dock 方法。

Streamlining Large Chemical Library Docking with Artificial Intelligence: the PyRMD2Dock Approach.

机构信息

DiSTABiF, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy.

出版信息

J Chem Inf Model. 2024 Apr 8;64(7):2143-2149. doi: 10.1021/acs.jcim.3c00647. Epub 2023 Aug 8.

Abstract

The present contribution introduces a novel computational protocol called PyRMD2Dock, which combines the Ligand-Based Virtual Screening (LBVS) tool PyRMD with the popular docking software AutoDock-GPU (AD4-GPU) to enhance the throughput of virtual screening campaigns for drug discovery. By implementing PyRMD2Dock, we demonstrate that it is possible to rapidly screen massive chemical databases and identify those with the highest predicted binding affinity to a target protein. Our benchmarking and screening experiments illustrate the predictive power and speed of PyRMD2Dock and highlight its potential to accelerate the discovery of novel drug candidates. Overall, this study showcases the value of combining AI-powered LBVS tools with docking software to enable effective and high-throughput virtual screening of ultralarge molecular databases in drug discovery. PyRMD and the PyRMD2Dock protocol are freely available on GitHub (https://github.com/cosconatilab/PyRMD) as an open-source tool.

摘要

本研究提出了一种名为 PyRMD2Dock 的新型计算方案,它结合了基于配体的虚拟筛选工具 PyRMD 和流行的对接软件 AutoDock-GPU(AD4-GPU),以提高药物发现虚拟筛选工作的通量。通过实施 PyRMD2Dock,我们证明了快速筛选大规模化学数据库并识别与靶标蛋白具有最高预测结合亲和力的化合物是可行的。我们的基准测试和筛选实验说明了 PyRMD2Dock 的预测能力和速度,并强调了它在加速新型候选药物发现方面的潜力。总的来说,这项研究展示了将人工智能驱动的基于配体的虚拟筛选工具与对接软件相结合,以实现药物发现中超大规模分子数据库的有效和高通量虚拟筛选的价值。PyRMD 和 PyRMD2Dock 协议可在 GitHub(https://github.com/cosconatilab/PyRMD)上免费获取,作为一个开源工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47c4/11005044/495e95118d86/ci3c00647_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验