Computational Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina.
Facultad de Ciencias Biomédicas, and Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina.
Expert Opin Drug Discov. 2022 Jan;17(1):71-78. doi: 10.1080/17460441.2021.1979514. Epub 2021 Sep 23.
The implementation of Artificial Intelligence (AI) methodologies to drug discovery (DD) are on the rise. Several applications have been developed for structure-based DD, where AI methods provide an alternative framework for the identification of ligands for validated therapeutic targets, as well as the design of ligands through generative models.
Herein, the authors review the contributions between the 2019 to present period regarding the application of AI methods to structure-based virtual screening (SBVS) which encompasses mainly molecular docking applications - binding pose prediction and binary classification for ligand or hit identification-, as well as drug design driven by machine learning (ML) generative models, and the validation of AI models in structure-based screening. Studies are reviewed in terms of their main objective, used databases, implemented methodology, input and output, and key results .
More profound analyses regarding the validity and applicability of AI methods in DD have begun to appear. In the near future, we expect to see more structure-based generative models- which are scarce in comparison to ligand-based generative models-, the implementation of standard guidelines for validating the generated structures, and more analyses regarding the validation of AI methods in structure-based DD.
人工智能(AI)方法在药物发现(DD)中的应用正在兴起。已经开发了几种基于结构的 DD 应用程序,其中 AI 方法为鉴定经证实的治疗靶点的配体以及通过生成模型设计配体提供了替代框架。
本文作者回顾了 2019 年至今期间在基于结构的虚拟筛选(SBVS)中应用 AI 方法的贡献,其中主要包括分子对接应用程序-结合构象预测和用于配体或命中识别的二进制分类-以及由机器学习(ML)生成模型驱动的药物设计,以及基于结构的筛选中 AI 模型的验证。研究根据其主要目标、使用的数据库、实施的方法、输入和输出以及关键结果进行了回顾。
关于 AI 方法在 DD 中的有效性和适用性的更深入分析已经开始出现。在不久的将来,我们预计会看到更多基于结构的生成模型-与基于配体的生成模型相比,生成模型还很稀缺-,验证生成结构的标准指南的实施,以及更多关于基于结构的 DD 中 AI 方法验证的分析。