Suppr超能文献

用非线性扩散决策模型来解释决策中的内源性效应。

Accounting for endogenous effects in decision-making with a non-linear diffusion decision model.

机构信息

CIAMS, Université Paris-Saclay, Paris, France.

CIAMS, Université d'Orléans, Orléans, France.

出版信息

Sci Rep. 2023 Apr 18;13(1):6323. doi: 10.1038/s41598-023-32841-9.

Abstract

The Drift-Diffusion Model (DDM) is widely accepted for two-alternative forced-choice decision paradigms thanks to its simple formalism and close fit to behavioral and neurophysiological data. However, this formalism presents strong limitations in capturing inter-trial dynamics at the single-trial level and endogenous influences. We propose a novel model, the non-linear Drift-Diffusion Model (nl-DDM), that addresses these issues by allowing the existence of several trajectories to the decision boundary. We show that the non-linear model performs better than the drift-diffusion model for an equivalent complexity. To give better intuition on the meaning of nl-DDM parameters, we compare the DDM and the nl-DDM through correlation analysis. This paper provides evidence of the functioning of our model as an extension of the DDM. Moreover, we show that the nl-DDM captures time effects better than the DDM. Our model paves the way toward more accurately analyzing across-trial variability for perceptual decisions and accounts for peri-stimulus influences.

摘要

漂移-扩散模型(DDM)因其简单的形式和对行为与神经生理学数据的紧密拟合,而被广泛应用于二择一的强制选择决策范式。然而,这种形式在捕捉单试次水平上的试验间动态和内源性影响方面存在很大的局限性。我们提出了一种新的模型,即非线性漂移-扩散模型(nl-DDM),它通过允许存在几个到达决策边界的轨迹来解决这些问题。我们表明,对于等效复杂度,非线性模型的性能优于漂移-扩散模型。为了更好地理解 nl-DDM 参数的含义,我们通过相关分析比较了 DDM 和 nl-DDM。本文为我们的模型作为 DDM 的扩展提供了证据。此外,我们表明,nl-DDM 比 DDM 更能捕捉时间效应。我们的模型为更准确地分析感知决策的跨试次变异性铺平了道路,并解释了刺激前影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f365/10113207/e1901604324e/41598_2023_32841_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验