Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA.
Nanoscale. 2023 Aug 25;15(33):13595-13602. doi: 10.1039/d3nr01801f.
Bioorthogonal catalysis mediated by transition metal catalysts (TMCs) provides controlled activation of prodrugs through chemical reactions that do not interfere with cellular bioprocesses. The direct use of 'naked' TMCs in biological environments can have issues of solubility, deactivation, and toxicity. Here, we demonstrate the design and application of a biodegradable nanoemulsion-based scaffold stabilized by a cationic polymer that encapsulates a palladium-based TMC, generating bioorthogonal nanocatalyst "polyzymes". These nanocatalysts enhance the stability and catalytic activity of the TMCs while maintaining excellent mammalian cell biocompatibility. The therapeutic potential of these nanocatalysts was demonstrated through efficient activation of a non-toxic prodrug into an active chemotherapeutic drug, leading to efficient killing of cancer cells.
过渡金属催化剂(TMCs)介导的生物正交催化通过化学反应提供了前药的可控激活,这些反应不会干扰细胞的生物过程。在生物环境中直接使用“裸露”的 TMC 会存在溶解度、失活和毒性等问题。在这里,我们展示了一种基于可生物降解纳米乳液的支架的设计和应用,该支架由阳离子聚合物稳定,其中封装了一种基于钯的 TMC,生成了生物正交纳米催化剂“多酶”。这些纳米催化剂提高了 TMC 的稳定性和催化活性,同时保持了优异的哺乳动物细胞生物相容性。这些纳米催化剂的治疗潜力通过将无毒前药高效激活为活性化疗药物得到了证明,从而有效地杀死了癌细胞。