Suppr超能文献

基于聚合物的生物正交纳米催化剂用于治疗细菌生物膜。

Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms.

机构信息

Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003, United States.

Key Laboratory for Green Process of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China.

出版信息

J Am Chem Soc. 2020 Jun 17;142(24):10723-10729. doi: 10.1021/jacs.0c01758. Epub 2020 Jun 8.

Abstract

Bioorthogonal catalysis offers a unique strategy to modulate biological processes through the in situ generation of therapeutic agents. However, the direct application of bioorthogonal transition metal catalysts (TMCs) in complex media poses numerous challenges due to issues of limited biocompatibility, poor water solubility, and catalyst deactivation in biological environments. We report here the creation of catalytic "polyzymes", comprised of self-assembled polymer nanoparticles engineered to encapsulate lipophilic TMCs. The incorporation of catalysts into these nanoparticle scaffolds creates water-soluble constructs that provide a protective environment for the catalyst. The potential therapeutic utility of these nanozymes was demonstrated through antimicrobial studies in which a cationic nanozyme was able to penetrate into biofilms and eradicate embedded bacteria through the bioorthogonal activation of a pro-antibiotic.

摘要

生物正交催化提供了一种独特的策略,可通过原位生成治疗剂来调节生物过程。然而,由于生物相容性有限、水溶性差以及在生物环境中催化剂失活等问题,直接应用生物正交过渡金属催化剂(TMCs)在复杂介质中面临着诸多挑战。我们在此报告了催化“多酶”的创建,该多酶由自组装聚合物纳米粒子组成,设计用于封装亲脂性 TMCs。将催化剂纳入这些纳米粒子支架中,可形成水溶性结构,为催化剂提供保护环境。通过抗菌研究证明了这些纳米酶的潜在治疗用途,其中阳离子纳米酶能够穿透生物膜,并通过前抗生素的生物正交激活来消除嵌入的细菌。

相似文献

7
In situ activation of therapeutics through bioorthogonal catalysis.通过生物正交催化原位激活治疗剂。
Adv Drug Deliv Rev. 2021 Sep;176:113893. doi: 10.1016/j.addr.2021.113893. Epub 2021 Jul 29.

引用本文的文献

3
Engineering of bioorthogonal polyzymes through polymer sidechain design.通过聚合物侧链设计构建生物正交多酶
J Polym Sci (2020). 2024 Aug 15;62(16):3787-3793. doi: 10.1002/pol.20230582. Epub 2024 Jan 11.
4
Bioorthogonal catalysis for antimicrobial therapy.用于抗菌治疗的生物正交催化
Medmat. 2024 May 13;1(1):2-5. doi: 10.1097/mm9.0000000000000001. eCollection 2024 Sep.
9
Catalytic olefin metathesis in blood.血液中的催化烯烃复分解反应。
Chem Sci. 2023 Sep 27;14(40):11033-11039. doi: 10.1039/d3sc03785a. eCollection 2023 Oct 18.

本文引用的文献

1
Nanozyme-based catalytic theranostics.基于纳米酶的催化诊疗
RSC Adv. 2019 Dec 23;10(1):10-20. doi: 10.1039/c9ra09021e. eCollection 2019 Dec 20.
2
Bioorthogonal nanozymes: progress towards therapeutic applications.生物正交纳米酶:治疗应用的进展
Trends Chem. 2019 Apr;1(1):90-98. doi: 10.1016/j.trechm.2019.02.006. Epub 2019 Mar 8.
3
Nanozymes: A New Disease Imaging Strategy.纳米酶:一种新的疾病成像策略。
Front Bioeng Biotechnol. 2020 Feb 6;8:15. doi: 10.3389/fbioe.2020.00015. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验