Suppr超能文献

通过生物正交催化原位激活治疗剂。

In situ activation of therapeutics through bioorthogonal catalysis.

机构信息

Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.

Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.

出版信息

Adv Drug Deliv Rev. 2021 Sep;176:113893. doi: 10.1016/j.addr.2021.113893. Epub 2021 Jul 29.

Abstract

Bioorthogonal chemistry refers to any chemical reactions that can occur inside of living systems without interfering with native biochemical processes, which has become a promising strategy for modulating biological processes. The development of synthetic metal-based catalysts to perform bioorthogonal reactions has significantly expanded the toolkit of bioorthogonal chemistry for medicinal chemistry and synthetic biology. A wide range of homogeneous and heterogeneous transition metal catalysts (TMCs) have been reported, mediating different transformations such as cycloaddition reactions, as well as bond forming and cleaving reactions. However, the direct application of 'naked' TMCs in complex biological media poses numerous challenges, including poor water solubility, toxicity and catalyst deactivation. Incorporating TMCs into nanomaterials to create bioorthogonal nanocatalysts can solubilize and stabilize catalyst molecules, with the decoration of the nanocatalysts used to provide spatiotemporal control of catalysis. This review presents an overview of the advances in the creation of bioorthogonal nanocatalysts, highlighting different choice of nano-scaffolds, and the therapeutic and diagnostic applications.

摘要

生物正交化学是指在不干扰天然生物化学过程的情况下,能够在活体内发生的任何化学反应,这已成为调节生物过程的一种很有前途的策略。合成金属基催化剂用于进行生物正交反应的发展,极大地扩展了生物正交化学在药物化学和合成生物学中的工具包。已经报道了广泛的均相和多相过渡金属催化剂(TMC),介导了不同的转化,如环加成反应,以及键形成和断裂反应。然而,“裸露”TMC 在复杂的生物介质中的直接应用带来了许多挑战,包括较差的水溶性、毒性和催化剂失活。将 TMC 纳入纳米材料中以创建生物正交纳米催化剂,可以溶解和稳定催化剂分子,纳米催化剂的修饰用于提供催化的时空控制。本文综述了生物正交纳米催化剂的研究进展,重点介绍了不同纳米支架的选择,以及治疗和诊断应用。

相似文献

1
In situ activation of therapeutics through bioorthogonal catalysis.
Adv Drug Deliv Rev. 2021 Sep;176:113893. doi: 10.1016/j.addr.2021.113893. Epub 2021 Jul 29.
2
Nanomaterial-based bioorthogonal nanozymes for biological applications.
Chem Soc Rev. 2021 Dec 13;50(24):13467-13480. doi: 10.1039/d0cs00659a.
3
All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms.
Chem Sci. 2022 Oct 7;13(41):12071-12077. doi: 10.1039/d2sc03895a. eCollection 2022 Oct 26.
5
Bioorthogonal nanozymes: an emerging strategy for disease therapy.
Nanoscale. 2022 Dec 22;15(1):41-62. doi: 10.1039/d2nr05920g.
6
Progress in controllable bioorthogonal catalysis for prodrug activation.
Chem Commun (Camb). 2023 Oct 19;59(84):12548-12559. doi: 10.1039/d3cc04286c.
7
Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications.
Adv Mater. 2024 Mar;36(10):e2300943. doi: 10.1002/adma.202300943. Epub 2023 Oct 18.
8
Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms.
J Am Chem Soc. 2020 Jun 17;142(24):10723-10729. doi: 10.1021/jacs.0c01758. Epub 2020 Jun 8.
9
Bioorthogonal nanozymes for breast cancer imaging and therapy.
J Control Release. 2023 May;357:31-39. doi: 10.1016/j.jconrel.2023.03.032. Epub 2023 Mar 28.
10
Biodegradable Antibacterial Bioorthogonal Polymeric Nanocatalysts Prepared by Flash Nanoprecipitation.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):15260-15268. doi: 10.1021/acsami.3c02640. Epub 2023 Mar 15.

引用本文的文献

1
Supramolecular Materials and Strategies for Bioorthogonal Chemical Transformations.
Chem Rev. 2025 Aug 13;125(15):7223-7274. doi: 10.1021/acs.chemrev.5c00047. Epub 2025 Aug 1.
2
Streamlined Identification of Metallopeptides for Intracellular Catalysis Using Positionally Addressable Combinatorial Libraries.
ACS Catal. 2025 May 8;15(10):8624-8632. doi: 10.1021/acscatal.5c00525. eCollection 2025 May 16.
3
A bacteria-based bioorthogonal platform disrupts the flexible lipid homeostasis for potent metabolic therapy.
Chem Sci. 2025 Feb 28;16(14):6014-6022. doi: 10.1039/d4sc06481j. eCollection 2025 Apr 2.
4
Exploring New Bioorthogonal Catalysts: Scaffold Diversity in Catalysis for Chemical Biology.
Adv Sci (Weinh). 2025 Mar;12(9):e2404431. doi: 10.1002/advs.202404431. Epub 2025 Feb 7.
6
Antibody-Drug Conjugates-Evolution and Perspectives.
Int J Mol Sci. 2024 Jun 26;25(13):6969. doi: 10.3390/ijms25136969.
7
Modulation of Gold Nanoparticle Ligand Structure-Dynamic Relationships Probed Using Solution NMR.
ACS Nanosci Au. 2023 Nov 8;4(1):62-68. doi: 10.1021/acsnanoscienceau.3c00042. eCollection 2024 Feb 21.
8
Polarization of macrophages to an anti-cancer phenotype through uncaging of a TLR 7/8 agonist using bioorthogonal nanozymes.
Chem Sci. 2024 Jan 9;15(7):2486-2494. doi: 10.1039/d3sc06431j. eCollection 2024 Feb 14.
9
Enhanced Efficiency of Pd(0)-Based Single Chain Polymeric Nanoparticles for Prodrug Activation by Modulating the Polymer's Microstructure.
Nano Lett. 2024 Feb 21;24(7):2242-2249. doi: 10.1021/acs.nanolett.3c04466. Epub 2024 Feb 12.
10
Intracellular Synthesis of Indoles Enabled by Visible-Light Photocatalysis.
J Am Chem Soc. 2024 Feb 7;146(5):2895-2900. doi: 10.1021/jacs.3c13647. Epub 2024 Jan 26.

本文引用的文献

1
Protein ROMP: Aqueous Graft-from Ring-Opening Metathesis Polymerization.
ACS Macro Lett. 2015 Sep 15;4(9):969-973. doi: 10.1021/acsmacrolett.5b00497. Epub 2015 Aug 25.
3
Bioorthogonal nanozymes: progress towards therapeutic applications.
Trends Chem. 2019 Apr;1(1):90-98. doi: 10.1016/j.trechm.2019.02.006. Epub 2019 Mar 8.
4
Bioorthogonal release of anticancer drugs gold-triggered 2-alkynylbenzamide cyclization.
Chem Sci. 2020 Sep 2;11(40):10928-10933. doi: 10.1039/d0sc04329j.
5
Bioorthogonal catalytic patch.
Nat Nanotechnol. 2021 Aug;16(8):933-941. doi: 10.1038/s41565-021-00910-7. Epub 2021 May 10.
6
Current Strategies for Modulating Aβ Aggregation with Multifunctional Agents.
Acc Chem Res. 2021 May 4;54(9):2172-2184. doi: 10.1021/acs.accounts.1c00055. Epub 2021 Apr 21.
8
A Bimetallic Metal-Organic Framework Encapsulated with DNAzyme for Intracellular Drug Synthesis and Self-Sufficient Gene Therapy.
Angew Chem Int Ed Engl. 2021 May 25;60(22):12431-12437. doi: 10.1002/anie.202016442. Epub 2021 Apr 26.
9
Prodrug Activation by Gold Artificial Metalloenzyme-Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination.
Angew Chem Int Ed Engl. 2021 May 25;60(22):12446-12454. doi: 10.1002/anie.202100369. Epub 2021 Apr 6.
10
Intracellular Activation of Anticancer Therapeutics Using Polymeric Bioorthogonal Nanocatalysts.
Adv Healthc Mater. 2021 Mar;10(5):e2001627. doi: 10.1002/adhm.202001627. Epub 2020 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验