Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
Adv Drug Deliv Rev. 2021 Sep;176:113893. doi: 10.1016/j.addr.2021.113893. Epub 2021 Jul 29.
Bioorthogonal chemistry refers to any chemical reactions that can occur inside of living systems without interfering with native biochemical processes, which has become a promising strategy for modulating biological processes. The development of synthetic metal-based catalysts to perform bioorthogonal reactions has significantly expanded the toolkit of bioorthogonal chemistry for medicinal chemistry and synthetic biology. A wide range of homogeneous and heterogeneous transition metal catalysts (TMCs) have been reported, mediating different transformations such as cycloaddition reactions, as well as bond forming and cleaving reactions. However, the direct application of 'naked' TMCs in complex biological media poses numerous challenges, including poor water solubility, toxicity and catalyst deactivation. Incorporating TMCs into nanomaterials to create bioorthogonal nanocatalysts can solubilize and stabilize catalyst molecules, with the decoration of the nanocatalysts used to provide spatiotemporal control of catalysis. This review presents an overview of the advances in the creation of bioorthogonal nanocatalysts, highlighting different choice of nano-scaffolds, and the therapeutic and diagnostic applications.
生物正交化学是指在不干扰天然生物化学过程的情况下,能够在活体内发生的任何化学反应,这已成为调节生物过程的一种很有前途的策略。合成金属基催化剂用于进行生物正交反应的发展,极大地扩展了生物正交化学在药物化学和合成生物学中的工具包。已经报道了广泛的均相和多相过渡金属催化剂(TMC),介导了不同的转化,如环加成反应,以及键形成和断裂反应。然而,“裸露”TMC 在复杂的生物介质中的直接应用带来了许多挑战,包括较差的水溶性、毒性和催化剂失活。将 TMC 纳入纳米材料中以创建生物正交纳米催化剂,可以溶解和稳定催化剂分子,纳米催化剂的修饰用于提供催化的时空控制。本文综述了生物正交纳米催化剂的研究进展,重点介绍了不同纳米支架的选择,以及治疗和诊断应用。