Zhang Xianzhi, Landis Ryan F, Keshri Puspam, Cao-Milán Roberto, Luther David C, Gopalakrishnan Sanjana, Liu Yuanchang, Huang Rui, Li Gengtan, Malassiné Morgane, Uddin Imad, Rondon Brayan, Rotello Vincent M
Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, USA.
Adv Healthc Mater. 2021 Mar;10(5):e2001627. doi: 10.1002/adhm.202001627. Epub 2020 Dec 13.
Bioorthogonal catalysis provides a promising strategy for imaging and therapeutic applications, providing controlled in situ activation of pro-dyes and prodrugs. In this work, the use of a polymeric scaffold to encapsulate transition metal catalysts (TMCs), generating bioorthogonal "polyzymes," is presented. These polyzymes enhance the stability of TMCs, protecting the catalytic centers from deactivation in biological media. The therapeutic potential of these polyzymes is demonstrated by the transformation of a nontoxic prodrug to an anticancer drug (mitoxantrone), leading to the cancer cell death in vitro.
生物正交催化为成像和治疗应用提供了一种很有前景的策略,可实现前体染料和前体药物的可控原位激活。在这项工作中,展示了使用聚合物支架封装过渡金属催化剂(TMC),从而生成生物正交“多酶”。这些多酶提高了TMC的稳定性,保护催化中心在生物介质中不被失活。通过将无毒前体药物转化为抗癌药物(米托蒽醌),导致体外癌细胞死亡,证明了这些多酶的治疗潜力。