Purg Nina, Demšar Jure, Anticevic Alan, Repovš Grega
Department of Psychology, Faculty of Arts, University of Ljubljana, Ljubljana, Slovenia.
Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia.
Front Neuroimaging. 2022 Dec 5;1:983324. doi: 10.3389/fnimg.2022.983324. eCollection 2022.
The analysis of task-related fMRI data at the level of individual participants is commonly based on general linear modeling (GLM), which allows us to estimate the extent to which the BOLD signal can be explained by the task response predictors specified in the event model. The predictors are constructed by convolving the hypothesized time course of neural activity with an assumed hemodynamic response function (HRF). However, our assumptions about the components of brain activity, including their onset and duration, may be incorrect. Their timing may also differ across brain regions or from person to person, leading to inappropriate or suboptimal models, poor fit of the model to actual data, and invalid estimates of brain activity. Here, we present an approach that uses theoretically driven models of task response to define constraints on which the final model is computationally derived using actual fMRI data. Specifically, we developed autohrf-an R package that enables the evaluation and data-driven estimation of event models for GLM analysis. The highlight of the package is the automated parameter search that uses genetic algorithms to find the onset and duration of task predictors that result in the highest fitness of GLM based on the fMRI signal under predefined constraints. We evaluated the usefulness of the autohrf package on two original datasets of task-related fMRI activity, a slow event-related spatial working memory study and a mixed state-item study using the flanker task, and on a simulated slow event-related working memory data. Our results suggest that autohrf can be used to efficiently construct and evaluate better task-related brain activity models to gain a deeper understanding of BOLD task response and improve the validity of model estimates. Our study also highlights the sensitivity of fMRI analysis with GLM to precise event model specification and the need for model evaluation, especially in complex and overlapping event designs.
在个体参与者层面分析与任务相关的功能磁共振成像(fMRI)数据通常基于通用线性模型(GLM),这使我们能够估计事件模型中指定的任务响应预测因子对血氧水平依赖(BOLD)信号的解释程度。预测因子是通过将假设的神经活动时间进程与假定的血流动力学响应函数(HRF)进行卷积构建的。然而,我们对大脑活动成分的假设,包括其起始和持续时间,可能是不正确的。它们的时间安排在不同脑区或不同人之间也可能不同,从而导致模型不合适或次优、模型与实际数据拟合不佳以及对大脑活动的估计无效。在这里,我们提出一种方法,该方法使用理论驱动的任务响应模型来定义约束条件,最终模型在此约束条件下利用实际fMRI数据通过计算得出。具体而言,我们开发了autohrf——一个R包,它能够对用于GLM分析的事件模型进行评估和数据驱动的估计。该包的亮点是自动参数搜索,它使用遗传算法在预定义约束下基于fMRI信号找到导致GLM适应性最高的任务预测因子的起始和持续时间。我们在两个与任务相关的fMRI活动的原始数据集上评估了autohrf包的有用性,一个是缓慢事件相关的空间工作记忆研究,另一个是使用侧翼任务的混合状态-项目研究,以及一个模拟的缓慢事件相关工作记忆数据。我们的结果表明,autohrf可用于有效地构建和评估更好的与任务相关的大脑活动模型,以更深入地理解BOLD任务响应并提高模型估计的有效性。我们的研究还强调了使用GLM进行fMRI分析对精确事件模型规范的敏感性以及模型评估的必要性,特别是在复杂和重叠事件设计中。