Suppr超能文献

基于 MRI 的深度学习放射组学模型在异柠檬酸脱氢酶突变型星形细胞瘤中 CDKN2A/B 纯合缺失状态的术前鉴别

Preoperative Discrimination of CDKN2A/B Homozygous Deletion Status in Isocitrate Dehydrogenase-Mutant Astrocytoma: A Deep Learning-Based Radiomics Model Using MRI.

机构信息

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

Department of Nuclear Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.

出版信息

J Magn Reson Imaging. 2024 May;59(5):1655-1664. doi: 10.1002/jmri.28945. Epub 2023 Aug 9.

Abstract

BACKGROUND

Cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion has been verified as an independent and critical biomarker of negative prognosis and short survival in isocitrate dehydrogenase (IDH)-mutant astrocytoma. Therefore, noninvasive and accurate discrimination of CDKN2A/B homozygous deletion status is essential for the clinical management of IDH-mutant astrocytoma patients.

PURPOSE

To develop a noninvasive, robust preoperative model based on MR image features for discriminating CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma.

STUDY TYPE

Retrospective.

POPULATION

Two hundred fifty-one patients: 107 patients with CDKN2A/B homozygous deletion and 144 patients without CDKN2A/B homozygous deletion.

FIELD STRENGTH/SEQUENCE: 3.0 T/1.5 T: Contrast-enhanced T1-weighted spin-echo inversion recovery sequence (CE-T1WI) and T2-weighted fluid-attenuation spin-echo inversion recovery sequence (T2FLAIR).

ASSESSMENT

A total of 1106 radiomics and 1000 deep learning features extracted from CE-T1WI and T2FLAIR were used to develop models to discriminate the CDKN2A/B homozygous deletion status. Radiomics models, deep learning-based radiomics (DLR) models and the final integrated model combining radiomics features with deep learning features were developed and compared their preoperative discrimination performance.

STATISTICAL TESTING

Pearson chi-square test and Mann Whitney U test were used for assessing the statistical differences in patients' clinical characteristics. The Delong test compared the statistical differences of receiver operating characteristic (ROC) curves and area under the curve (AUC) of different models. The significance threshold is P < 0.05.

RESULTS

The final combined model (training AUC = 0.966; validation AUC = 0.935; test group: AUC = 0.943) outperformed the optimal models based on only radiomics or DLR features (training: AUC = 0.916 and 0.952; validation: AUC = 0.886 and 0.912; test group: AUC = 0.862 and 0.902).

DATA CONCLUSION

Whether based on a single sequence or a combination of two sequences, radiomics and DLR models have achieved promising performance in assessing CDKN2A/B homozygous deletion status. However, the final model combining both deep learning and radiomics features from CE-T1WI and T2FLAIR outperformed the optimal radiomics or DLR model.

EVIDENCE LEVEL

4 TECHNICAL EFFICACY: Stage 2.

摘要

背景

细胞周期蛋白依赖性激酶抑制剂 2A/B(CDKN2A/B)纯合缺失已被证实是异柠檬酸脱氢酶(IDH)突变型星形细胞瘤不良预后和生存期短的独立且关键的生物标志物。因此,对于 IDH 突变型星形细胞瘤患者的临床管理,非侵入性和准确地区分 CDKN2A/B 纯合缺失状态至关重要。

目的

开发一种基于磁共振成像特征的非侵入性、稳健的术前模型,用于区分 IDH 突变型星形细胞瘤的 CDKN2A/B 纯合缺失状态。

研究类型

回顾性。

人群

251 例患者:107 例 CDKN2A/B 纯合缺失,144 例 CDKN2A/B 非纯合缺失。

磁场强度/序列:3.0T/1.5T:对比增强 T1 加权自旋回波反转恢复序列(CE-T1WI)和 T2 加权液体衰减反转恢复序列(T2FLAIR)。

评估

从 CE-T1WI 和 T2FLAIR 中提取了 1106 个放射组学和 1000 个深度学习特征,用于开发用于区分 CDKN2A/B 纯合缺失状态的模型。开发了放射组学模型、基于深度学习的放射组学(DLR)模型以及结合放射组学特征和深度学习特征的最终综合模型,并比较了它们的术前鉴别性能。

统计学检验

皮尔逊卡方检验和曼惠特尼 U 检验用于评估患者临床特征的统计学差异。德朗检验比较了不同模型的受试者工作特征(ROC)曲线和曲线下面积(AUC)的统计学差异。显著性阈值为 P<0.05。

结果

最终的综合模型(训练 AUC=0.966;验证 AUC=0.935;测试组:AUC=0.943)优于仅基于放射组学或 DLR 特征的最佳模型(训练:AUC=0.916 和 0.952;验证:AUC=0.886 和 0.912;测试组:AUC=0.862 和 0.902)。

数据结论

无论基于单个序列还是两个序列的组合,放射组学和 DLR 模型在评估 CDKN2A/B 纯合缺失状态方面都取得了有希望的性能。然而,从 CE-T1WI 和 T2FLAIR 结合深度学习和放射组学特征的最终模型优于最佳的放射组学或 DLR 模型。

证据水平

4 级技术功效:2 级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验