Genpax, London, UK.
Microb Genom. 2023 Aug;9(8). doi: 10.1099/mgen.0.001087.
Bacterial healthcare-associated infections (HAIs) are a substantial source of global morbidity and mortality. The estimated cost associated with HAIs ranges from $35 to $45 billion in the USA alone. The costs and accessibility of whole genome sequencing (WGS) of bacteria and the lack of sufficiently accurate, high-resolution, scalable and accessible analysis for strain identification are being addressed. Thus, it is timely to determine the economic viability and impact of routine diagnostic bacterial genomics. The aim of this study was to model the economic impact of a WGS surveillance system that proactively detects and directs interventions for nosocomial infections and outbreaks compared to the current standard of care, without WGS. Using a synthesis of published models, inputs from national statistics, and peer-reviewed articles, the economic impacts of conducting a WGS-led surveillance system addressing the 11 most common nosocomial pathogen groups in England and the USA were modelled. This was followed by a series of sensitivity analyses. England was used to establish the baseline model because of the greater availability of underpinning data, and this was then modified using USA-specific parameters where available. The model for the NHS in England shows bacterial HAIs currently cost the NHS around £3 billion. WGS-based surveillance delivery is predicted to cost £61.1 million associated with the prevention of 74 408 HAIs and 1257 deaths. The net cost saving was £478.3 million, of which £65.8 million were from directly incurred savings (antibiotics, consumables, etc.) and £412.5 million from opportunity cost savings due to re-allocation of hospital beds and healthcare professionals. The USA model indicates that the bacterial HAI care baseline costs are around $18.3 billion. WGS surveillance costs $169.2 million, and resulted in a net saving of ca.$3.2 billion, while preventing 169 260 HAIs and 4862 deaths. From a 'return on investment' perspective, the model predicts a return to the hospitals of £7.83 per £1 invested in diagnostic WGS in the UK, and US$18.74 per $1 in the USA. Sensitivity analyses show that substantial savings are retained when inputs to the model are varied within a wide range of upper and lower limits. Modelling a proactive WGS system addressing HAI pathogens shows significant improvement in morbidity and mortality while simultaneously achieving substantial savings to healthcare facilities that more than offset the cost of implementing diagnostic genomics surveillance.
细菌引起的与医疗保健相关的感染(HAIs)是全球发病率和死亡率的主要来源。仅在美国,与 HAIs 相关的估计成本就在 350 亿至 450 亿美元之间。目前正在解决细菌全基因组测序(WGS)的成本和可及性问题,以及缺乏足够准确、高分辨率、可扩展和可及的分析方法来进行菌株鉴定的问题。因此,确定常规诊断细菌基因组学的经济可行性和影响是适时的。本研究的目的是模拟 WGS 监测系统的经济影响,该系统与目前没有 WGS 的标准护理相比,可以主动检测和指导医院感染和暴发的干预措施。该系统使用发表模型的综合内容、国家统计数据的投入以及同行评审文章,对英国和美国最常见的 11 种医院病原体组进行 WGS 检测的监测系统的经济影响进行建模。随后进行了一系列敏感性分析。由于有更多的基础数据,因此使用英格兰的数据来建立基线模型,然后在可用的情况下使用美国特定的参数对模型进行修改。英格兰国民保健制度(NHS)的模型显示,目前细菌 HAIs 给 NHS 带来的成本约为 30 亿英镑。基于 WGS 的监测系统的实施预计将花费 6110 万英镑,可预防 74408 例 HAIs 和 1257 例死亡。净节省成本为 4.783 亿英镑,其中 6580 万英镑来自直接节省(抗生素、消耗品等),4.125 亿英镑来自因重新分配医院床位和医疗保健专业人员而产生的机会成本节省。美国模型表明,细菌 HAI 护理的基线成本约为 183 亿美元。WGS 监测成本为 1.692 亿美元,净节省约 32 亿美元,同时预防了 169260 例 HAIs 和 4862 例死亡。从“投资回报”的角度来看,该模型预测英国每投资 1 英镑用于诊断 WGS,医院将获得 7.83 英镑的回报,而美国每投资 1 美元将获得 18.74 美元的回报。敏感性分析表明,当模型输入在较大的上下限范围内变化时,仍保留大量节省。对主动 WGS 系统进行建模,以解决 HAI 病原体,可显著改善发病率和死亡率,同时为医疗机构节省大量成本,大大超过实施诊断基因组学监测的成本。