Suppr超能文献

CA FIRST(加利福尼亚发热婴儿风险分层工具)在学习型健康系统中的算法开发。

CA FIRST (California Febrile Infant Risk Stratification Tool) Algorithm Development in a Learning Health System.

机构信息

Division of Infectious Diseases, Department of Pediatrics, Kaiser Permanente Northern California, San Francisco, CA, USA.

The Permanente Medical Group, Oakland, CA, USA.

出版信息

Perm J. 2023 Sep 15;27(3):92-98. doi: 10.7812/TPP/23.030. Epub 2023 Aug 10.

Abstract

Introduction There is considerable variation in the approach to infants presenting to the emergency department (ED) with fever. The authors' primary aim was to develop a robust set of algorithms using community ED data to inform modifications of broader clinical guidance. Methods The authors report the development of California Febrile Infant Risk Stratification Tool (CA FIRST) using key components of the Roseville Protocol (ROS) and American Academy of Pediatrics (AAP) Clinical Practice Guideline (CPG). Expanded guidance was derived using a retrospective analysis of a cohort of 3527 febrile infants aged 7-90 days presenting to any Kaiser Permanente Northern California ED between 2010 and 2019 who underwent a core febrile infant evaluation. Results Melding ROS and AAP CPG algorithms in infants 7-60 days old, CA FIRST Algorithms had comparable performance characteristics to ROS and AAP CPG. CA FIRST enhancements included guidance on febrile infants 61-90 days old, high-risk infants, infants with bronchiolitis, and infants who received immunizations within the prior 48 hours. This retrospective analysis revealed that of 235 febrile infants 22-90 days old with respiratory syncytial virus and 221 who had fever in the 48 hours following vaccination, there were no cases of invasive bacterial infection. Discussion CA FIRST is a set of 13 algorithms providing a thoughtful and flexible approach to the febrile infant while minimizing unnecessary interventions. Conclusions CA FIRST Algorithms empower clinicians to manage most febrile infants. Algorithms are being modified as new data become available, imparting useful and ever-current educational information within a learning health care system.

摘要

简介 对于因发热而到急诊科就诊的婴儿,其处理方法存在较大差异。作者的主要目标是利用社区急诊科的数据制定一组可靠的算法,为更广泛的临床指南的修改提供信息。

方法 作者报告了加利福尼亚发热婴儿风险分层工具(CA FIRST)的开发,该工具使用了罗斯维尔方案(ROS)和美国儿科学会(AAP)临床实践指南(CPG)的关键组成部分。通过对 2010 年至 2019 年间在任何 Kaiser Permanente 北加州急诊科就诊的 7-90 天龄发热婴儿(共 3527 例)进行回顾性分析,得出了扩展指南。

结果 将 ROS 和 AAP CPG 算法融合在 7-60 天龄婴儿中,CA FIRST 算法与 ROS 和 AAP CPG 具有相似的性能特征。CA FIRST 的增强功能包括对 61-90 天龄发热婴儿、高危婴儿、患有毛细支气管炎的婴儿以及在 48 小时内接受免疫接种的婴儿的指导。这项回顾性分析显示,在 235 例发热婴儿中,有 22-90 天龄患有呼吸道合胞病毒,有 221 例在接种疫苗后 48 小时内发热,没有发生侵袭性细菌感染的病例。

讨论 CA FIRST 是一组 13 个算法,为发热婴儿提供了一种深思熟虑且灵活的处理方法,同时最大限度地减少不必要的干预。

结论 CA FIRST 算法使临床医生能够管理大多数发热婴儿。随着新数据的出现,算法正在不断修改,在学习型医疗保健系统中提供有用且最新的教育信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d39/10502387/0528ede075de/tpp_23.030-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验