Department of Fundamental Pathology, Endocrinology Research Centre, Moscow, Russia.
Front Endocrinol (Lausanne). 2023 Jul 24;14:1218686. doi: 10.3389/fendo.2023.1218686. eCollection 2023.
Adrenocortical cancer (ACC) is a rare malignant tumor that originates in the adrenal cortex. Despite extensive molecular-genetic, pathomorphological, and clinical research, assessing the malignant potential of adrenal neoplasms in clinical practice remains a daunting task in histological diagnosis. Although the Weiss score is the most prevalent method for diagnosing ACC, its limitations necessitate additional algorithms for specific histological variants. Unequal diagnostic value, subjectivity in evaluation, and interpretation challenges contribute to a gray zone where the reliable assessment of a tumor's malignant potential is unattainable. In this study, we introduce a universal mathematical model for the differential diagnosis of all morphological types of ACC in adults.
This model was developed by analyzing a retrospective sample of data from 143 patients who underwent histological and immunohistochemical examinations of surgically removed adrenal neoplasms. Statistical analysis was carried out on Python 3.1 in the Google Colab environment. The cutting point was chosen according to Youden's index. Scikit-learn 1.0.2 was used for building the multidimensional model for Python. Logistical regression analysis was executed with L1-regularization, which is an effective method for extracting the most significant features of the model.
The new system we have developed is a diagnostically meaningful set of indicators that takes into account a smaller number of criteria from the currently used Weiss scale. To validate the obtained model, we divided the initial sample set into training and test sets in a 9:1 ratio, respectively. The diagnostic algorithm is highly accurate [overall accuracy 100% (95% CI: 96%-100%)].
Our method involves determining eight diagnostically significant indicators that enable the calculation of ACC development probability using specified formulas. This approach may potentially enhance diagnostic precision and facilitate improved clinical outcomes in ACC management.
肾上腺皮质癌(ACC)是一种罕见的恶性肿瘤,起源于肾上腺皮质。尽管已经进行了广泛的分子遗传学、病理形态学和临床研究,但在临床实践中评估肾上腺肿瘤的恶性潜能仍然是组织学诊断中的一项艰巨任务。尽管 Weiss 评分是诊断 ACC 最常用的方法,但它的局限性需要针对特定的组织学变体制定额外的算法。诊断价值的不平等、评估的主观性以及解释的挑战导致了一个灰色地带,在这个地带中,无法可靠地评估肿瘤的恶性潜能。在这项研究中,我们引入了一种用于成人所有形态类型 ACC 鉴别诊断的通用数学模型。
该模型是通过分析 143 例接受手术切除肾上腺肿瘤的组织学和免疫组织化学检查的回顾性样本数据开发的。统计分析在 Google Colab 环境中的 Python 3.1 上进行。根据 Youden 指数选择切点。Scikit-learn 1.0.2 用于为 Python 构建多维模型。使用 L1-正则化执行逻辑回归分析,这是一种提取模型最重要特征的有效方法。
我们开发的新系统是一个有诊断意义的指标集,它考虑了目前 Weiss 评分中较少的标准。为了验证所获得的模型,我们将初始样本集按 9:1 的比例分别分为训练集和测试集。该诊断算法具有很高的准确性[总体准确率为 100%(95%CI:96%-100%)]。
我们的方法涉及确定八个具有诊断意义的指标,这些指标可以使用指定的公式计算 ACC 发展的概率。这种方法可能潜在地提高诊断精度,并有助于改善 ACC 管理的临床结果。