Department of Physics, University of Washington, Seattle, WA 98195, USA.
Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
Nucleic Acids Res. 2023 Sep 22;51(17):9266-9278. doi: 10.1093/nar/gkad660.
The genome of SARS-CoV-2 encodes for a helicase (nsp13) that is essential for viral replication and highly conserved across related viruses, making it an attractive antiviral target. Here we use nanopore tweezers, a high-resolution single-molecule technique, to gain detailed insight into how nsp13 turns ATP-hydrolysis into directed motion along nucleic acid strands. We measured nsp13 both as it translocates along single-stranded DNA or unwinds double-stranded DNA. Our data reveal nsp13's single-nucleotide steps, translocating at ∼1000 nt/s or unwinding at ∼100 bp/s. Nanopore tweezers' high spatiotemporal resolution enables detailed kinetic analysis of nsp13 motion. As a proof-of-principle for inhibition studies, we observed nsp13's motion in the presence of the ATPase inhibitor ATPγS. We construct a detailed picture of inhibition in which ATPγS has multiple mechanisms of inhibition. The dominant mechanism of inhibition depends on the application of assisting force. This lays the groundwork for future single-molecule inhibition studies with viral helicases.
SARS-CoV-2 的基因组编码一种解旋酶(nsp13),它对病毒复制至关重要,并且在相关病毒中高度保守,因此成为有吸引力的抗病毒靶点。在这里,我们使用纳米孔镊子,一种高分辨率的单分子技术,深入了解 nsp13 如何将 ATP 水解转化为沿着核酸链的定向运动。我们测量了 nsp13 在单链 DNA 上或双链 DNA 上解旋时的运动情况。我们的数据揭示了 nsp13 的单核苷酸步长,以约 1000 nt/s 的速度迁移或以约 100 bp/s 的速度解旋。纳米孔镊子的高时空分辨率使 nsp13 运动的详细动力学分析成为可能。作为抑制研究的原理验证,我们在存在 ATP 酶抑制剂 ATPγS 的情况下观察到了 nsp13 的运动。我们构建了一个详细的抑制图,其中 ATPγS 有多种抑制机制。抑制的主要机制取决于辅助力的施加。这为未来的病毒解旋酶的单分子抑制研究奠定了基础。