Suppr超能文献

相似文献

1
Role of ATP Hydrolysis and Product Release in the Translocation Mechanism of SARS-CoV-2 NSP13.
J Phys Chem B. 2024 Jan 18;128(2):492-503. doi: 10.1021/acs.jpcb.3c06714. Epub 2024 Jan 4.
2
The Role of ATP Hydrolysis and Product Release in the Translocation Mechanism of SARS-CoV-2 NSP13.
bioRxiv. 2023 Sep 29:2023.09.28.560057. doi: 10.1101/2023.09.28.560057.
3
Role of ATP in the RNA Translocation Mechanism of SARS-CoV-2 NSP13 Helicase.
J Phys Chem B. 2021 Aug 12;125(31):8787-8796. doi: 10.1021/acs.jpcb.1c04528. Epub 2021 Jul 30.
4
Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase.
Nat Commun. 2021 Aug 11;12(1):4848. doi: 10.1038/s41467-021-25166-6.
5
Biochemical analysis of SARS-CoV-2 Nsp13 helicase implicated in COVID-19 and factors that regulate its catalytic functions.
J Biol Chem. 2023 Mar;299(3):102980. doi: 10.1016/j.jbc.2023.102980. Epub 2023 Feb 4.
6
The stalk domain of SARS-CoV-2 NSP13 is essential for its helicase activity.
Biochem Biophys Res Commun. 2022 Apr 23;601:129-136. doi: 10.1016/j.bbrc.2022.02.068. Epub 2022 Feb 23.
8
Discovery of COVID-19 Inhibitors Targeting the SARS-CoV-2 Nsp13 Helicase.
J Phys Chem Lett. 2020 Nov 5;11(21):9144-9151. doi: 10.1021/acs.jpclett.0c02421. Epub 2020 Oct 14.
9
Motif V regulates energy transduction between the flavivirus NS3 ATPase and RNA-binding cleft.
J Biol Chem. 2020 Feb 7;295(6):1551-1564. doi: 10.1074/jbc.RA119.011922. Epub 2019 Dec 30.
10
SARS-Coronavirus-2 Nsp13 Possesses NTPase and RNA Helicase Activities That Can Be Inhibited by Bismuth Salts.
Virol Sin. 2020 Jun;35(3):321-329. doi: 10.1007/s12250-020-00242-1. Epub 2020 Jun 4.

本文引用的文献

1
Observing inhibition of the SARS-CoV-2 helicase at single-nucleotide resolution.
Nucleic Acids Res. 2023 Sep 22;51(17):9266-9278. doi: 10.1093/nar/gkad660.
2
Reaction Coordinates for Conformational Transitions Using Linear Discriminant Analysis on Positions.
J Chem Theory Comput. 2023 Jul 25;19(14):4427-4435. doi: 10.1021/acs.jctc.3c00051. Epub 2023 May 2.
3
Computational Study of Helicase from SARS-CoV-2 in RNA-Free and Engaged Form.
Int J Mol Sci. 2022 Nov 25;23(23):14721. doi: 10.3390/ijms232314721.
5
Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated with fitness.
Science. 2022 Jun 17;376(6599):1327-1332. doi: 10.1126/science.abm1208. Epub 2022 May 24.
6
Size-and-Shape Space Gaussian Mixture Models for Structural Clustering of Molecular Dynamics Trajectories.
J Chem Theory Comput. 2022 May 10;18(5):3218-3230. doi: 10.1021/acs.jctc.1c01290. Epub 2022 Apr 28.
7
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.
J Chem Theory Comput. 2010 Dec 14;6(12):3836-3849. doi: 10.1021/ct100481h. Epub 2010 Nov 9.
8
Ensemble cryo-EM reveals conformational states of the nsp13 helicase in the SARS-CoV-2 helicase replication-transcription complex.
Nat Struct Mol Biol. 2022 Mar;29(3):250-260. doi: 10.1038/s41594-022-00734-6. Epub 2022 Mar 8.
9
Structural biology of SARS-CoV-2: open the door for novel therapies.
Signal Transduct Target Ther. 2022 Jan 27;7(1):26. doi: 10.1038/s41392-022-00884-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验