Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074, United States.
J Phys Chem B. 2024 Jan 18;128(2):492-503. doi: 10.1021/acs.jpcb.3c06714. Epub 2024 Jan 4.
In response to the emergence of COVID-19, caused by SARS-CoV-2, there has been a growing interest in understanding the functional mechanisms of the viral proteins to aid in the development of new therapeutics. Nonstructural protein 13 (nsp13) helicase is an attractive target for antivirals because it is essential for viral replication and has a low mutation rate, yet the structural mechanisms by which this enzyme binds and hydrolyzes ATP to cause unidirectional RNA translocation remain elusive. Using Gaussian accelerated molecular dynamics (GaMD), we generated comprehensive conformational ensembles of all substrate states along the ATP-dependent cycle. Shape-GMM clustering of the protein yields four protein conformations that describe an opening and closing of both the ATP pocket and the RNA cleft that is achieved through a combination of conformational selection and induction along the ATP hydrolysis cycle. Furthermore, three protein-RNA conformations are observed that implicate motifs , , and as playing a pivotal role in an ATP-dependent inchworm translocation mechanism. Finally, based on a linear discriminant analysis of protein conformations, we identify L405 as a pivotal residue for the opening and closing mechanism and propose a L405D mutation as a way to disrupt translocation. This research enhances our understanding of nsp13's role in viral replication and could contribute to the development of antiviral strategies.
针对由 SARS-CoV-2 引起的 COVID-19 的出现,人们越来越感兴趣于了解病毒蛋白的功能机制,以帮助开发新的治疗方法。非结构蛋白 13(nsp13)解旋酶是抗病毒药物的一个有吸引力的靶标,因为它是病毒复制所必需的,而且突变率低,但该酶结合并水解 ATP 以引起单方向 RNA 易位的结构机制仍不清楚。使用高斯加速分子动力学(GaMD),我们沿着依赖于 ATP 的循环生成了所有底物状态的综合构象集合。通过形状-GMM 聚类,得到了四个蛋白质构象,它们描述了 ATP 口袋和 RNA 裂缝的打开和关闭,这是通过构象选择和沿 ATP 水解循环的诱导的组合来实现的。此外,观察到三种蛋白质-RNA 构象,暗示基序 、 和 在依赖于 ATP 的蠕动转运机制中发挥关键作用。最后,基于对蛋白质构象的线性判别分析,我们确定 L405 是打开和关闭机制的关键残基,并提出 L405D 突变作为破坏易位的一种方法。这项研究增强了我们对 nsp13 在病毒复制中的作用的理解,并可能有助于开发抗病毒策略。