Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.
Int J Comput Assist Radiol Surg. 2024 Jan;19(1):33-36. doi: 10.1007/s11548-023-02978-z. Epub 2023 Aug 10.
Depth estimation is the basis of 3D reconstruction of airway structure from 2D bronchoscopic scenes, which can be further used to develop a vision-based bronchoscopic navigation system. This work aims to improve the performance of depth estimation directly from bronchoscopic images by training a depth estimation network on both synthetic and real datasets.
We propose a cGAN-based network Bronchoscopic-Depth-GAN (BronchoDep-GAN) to estimate depth from bronchoscopic images by translating bronchoscopic images into depth maps. The network is trained in a supervised way learning from synthetic textured bronchoscopic image-depth pairs and virtual bronchoscopic image-depth pairs, and simultaneously, also in an unsupervised way learning from unpaired real bronchoscopic images and depth maps to adapt the model to real bronchoscopic scenes.
Our method is tested on both synthetic data and real data. However, the tests on real data are only qualitative, as no ground truth is available. The results show that our network obtains better accuracy in all cases in estimating depth from bronchoscopic images compared to the well-known cGANs pix2pix.
Including virtual and real bronchoscopic images in the training phase of the depth estimation networks can improve depth estimation's performance on both synthetic and real scenes. Further validation of this work is planned on 3D clinical phantoms. Based on the depth estimation results obtained in this work, the accuracy of locating bronchoscopes with corresponding pre-operative CTs will also be evaluated in comparison with the current clinical status.
深度估计是从二维支气管镜场景重建气道结构的 3D 重建的基础,可进一步用于开发基于视觉的支气管镜导航系统。本工作旨在通过在合成和真实数据集上训练深度估计网络,直接从支气管镜图像提高深度估计的性能。
我们提出了一种基于 cGAN 的网络 Bronchoscopic-Depth-GAN(BronchoDep-GAN),通过将支气管镜图像转换为深度图来估计深度。该网络通过从合成纹理支气管镜图像-深度对和虚拟支气管镜图像-深度对进行有监督学习,同时从未配对的真实支气管镜图像和深度图进行无监督学习,从而适应真实支气管镜场景,从而进行训练。
我们的方法在合成数据和真实数据上进行了测试。但是,由于没有真实的基准,因此对真实数据的测试仅具有定性意义。结果表明,与著名的 cGANs pix2pix 相比,我们的网络在从支气管镜图像估计深度方面的所有情况下都能获得更好的准确性。
在深度估计网络的训练阶段包括虚拟和真实的支气管镜图像,可以提高合成和真实场景中深度估计的性能。计划在 3D 临床体模上进一步验证这项工作。基于这项工作中获得的深度估计结果,还将与当前的临床状况相比,评估使用相应术前 CT 定位支气管镜的准确性。