Suppr超能文献

用于判断模型拟合的等效性检验:蒙特卡洛模拟

Equivalence testing to judge model fit: A Monte Carlo simulation.

作者信息

Peugh James L, Litson Kaylee, Feldon David F

机构信息

Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center.

Instructional Technology and Learning Sciences Department, Emma Eccles Jones College of Education and Human Services, Utah State University.

出版信息

Psychol Methods. 2023 Aug 10. doi: 10.1037/met0000591.

Abstract

Decades of published methodological research have shown the chi-square test of model fit performs inconsistently and unreliably as a determinant of structural equation model (SEM) fit. Likewise, SEM indices of model fit, such as comparative fit index (CFI) and root-mean-square error of approximation (RMSEA) also perform inconsistently and unreliably. Despite rather unreliable ways to statistically assess model fit, researchers commonly rely on these methods for lack of a suitable inferential alternative. Marcoulides and Yuan (2017) have proposed the first inferential test of SEM fit in many years: an equivalence test adaptation of the RMSEA and CFI indices (i.e., RMSEA and CFI). However, the ability of this equivalence testing approach to accurately judge acceptable and unacceptable model fit has not been empirically tested. This fully crossed Monte Carlo simulation evaluated the accuracy of equivalence testing combining many of the same independent variable (IV) conditions used in previous fit index simulation studies, including sample size ( = 100-1,000), model specification (correctly specified or misspecified), model type (confirmatory factor analysis [CFA], path analysis, or SEM), number of variables analyzed (low or high), data distribution (normal or skewed), and missing data (none, 10%, or 25%). Results show equivalence testing performs rather inconsistently and unreliably across IV conditions, with acceptable or unacceptable RMSEA and CFIt model fit index values often being contingent on complex interactions among conditions. Proportional -tests and logistic regression analyses indicated that equivalence tests of model fit are problematic under multiple conditions, especially those where models are mildly misspecified. Recommendations for researchers are offered, but with the provision that they be used with caution until more research and development is available. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

数十年来已发表的方法学研究表明,作为结构方程模型(SEM)拟合度的决定因素,卡方模型拟合检验表现出不一致性且不可靠。同样,SEM模型拟合指数,如比较拟合指数(CFI)和近似均方根误差(RMSEA),也表现出不一致性且不可靠。尽管在统计上评估模型拟合的方法相当不可靠,但由于缺乏合适的推断替代方法,研究人员通常仍依赖这些方法。马尔库利德斯和袁(2017年)提出了多年来首个SEM拟合的推断检验:RMSEA和CFI指数(即RMSEA和CFI)的等效性检验改编版。然而,这种等效性检验方法准确判断可接受和不可接受模型拟合的能力尚未经过实证检验。这项完全交叉的蒙特卡洛模拟评估了等效性检验的准确性,该检验结合了先前拟合指数模拟研究中使用的许多相同自变量(IV)条件,包括样本量(=100 - 1000)、模型设定(正确设定或错误设定)、模型类型(验证性因子分析[CFA]、路径分析或SEM)、分析的变量数量(低或高)、数据分布(正态或偏态)以及缺失数据(无、10%或25%)。结果表明,等效性检验在不同IV条件下表现出相当不一致且不可靠的情况,可接受或不可接受的RMSEA和CFIt模型拟合指数值通常取决于条件之间复杂的相互作用。比例检验和逻辑回归分析表明,模型拟合的等效性检验在多种条件下都存在问题,尤其是在模型轻度错误设定的情况下。为研究人员提供了建议,但前提是在有更多研究和进展之前应谨慎使用。(PsycInfo数据库记录(c)2023美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验