Suppr超能文献

纳米金属氧化物(TiO、MgO、CaO 和 ZnO)对γ射线辐照合成的(PEO/PEC-co-AAm)水凝胶抗菌性能的影响。

Effect of nano-metal oxides (TiO, MgO, CaO, and ZnO) on antibacterial property of (PEO/PEC-co-AAm) hydrogel synthesized by gamma irradiation.

机构信息

Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt.

Radiation Research of Polymer Chemistry Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, P.O. Box 8029, Cairo, Egypt.

出版信息

Int J Biol Macromol. 2023 Oct 1;250:126248. doi: 10.1016/j.ijbiomac.2023.126248. Epub 2023 Aug 9.

Abstract

The global threat of infectious diseases and antibiotic resistance calls for the development of potent antimicrobial agents integrated with hydrogel for effective control and treatment. Hydrogel is advanced biomaterials compounds. Hydrogel is an advanced biomaterial compound that offers tunable physical and chemical properties, which can be tailored to specific biomedical applications. This study investigates the antibacterial properties of pectin/polyethylene oxide (PEC/PEO)-based poly acrylamide hydrogels containing 5 wt% nano-metal oxides (TiO2, CaO, MgO, and ZnO) synthesized through gamma irradiation at a dose of 30 kGy. This technique allows for sterilization and effectively incorporating the metal oxide nanoparticles within the hydrogel matrix. Characterization of the nanocomposites is performed using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Incorporating metal oxide nanoparticles induces noticeable changes in the FTIR spectra, confirming interactions between the nanoparticles and the hydrogel matrix. The antibacterial activity of the nanocomposites is evaluated against different bacteria, and the results demonstrate significant inhibitory effects, especially for MgO- and ZnO-hydrogel nanocomposites against P. mirabilis, S. aureus, P. aeruginosa, and C. albicans, highlighting their potential as antimicrobial agents. The 5 wt% of MgO, ZnO, TiO and CaO inside PEO/PEC-co-AAm hydrogel nanocomposites exhibited significant inhibitory effects, with a respective optical density at λ = 600 nm (OD) values of 0.896 nm, 0.986 nm, 1.250 nm, and 1.980 nm compared to the control and hydrogel alone (OD values of 2.88 nm and 2.72 nm, respectively). The antibacterial activity of the (MgO-, ZnO-, TiO-, and CaO-hydrogel) was enhanced, resulting in the inhibition of S. aureus growth by approximately 68.89 %, 65.86 %, 56.25 %, and 31.94 %, respectively. Incorporating nanoparticles into a hydrogel matrix introduces novelty by preventing their aggregation and synergistically enhancing the antibacterial activity. The hydrogel's porous structure and water content facilitate the physical entrapment of bacteria and promote proximity to the metal oxide nanoparticles, resulting in improved interaction and antimicrobial effectiveness. Moreover, the hydrogel ability to absorb and entrap resistance compounds released by bacteria, coupled with its ability to supply water for the generation of reactive oxygen species, further contributes to its antimicrobial properties.

摘要

全球传染病和抗生素耐药性的威胁要求开发与水凝胶结合的有效控制和治疗的强效抗菌剂。水凝胶是一种先进的生物材料化合物。水凝胶是一种先进的生物材料化合物,具有可调节的物理和化学性质,可以针对特定的生物医学应用进行定制。本研究调查了含有 5wt%纳米金属氧化物(TiO2、CaO、MgO 和 ZnO)的果胶/聚氧化乙烯(PEC/PEO)-聚丙烯酰胺水凝胶的抗菌性能,这些纳米氧化物是通过剂量为 30kGy 的伽马辐照合成的。该技术可用于灭菌,并有效地将金属氧化物纳米颗粒掺入水凝胶基质中。使用傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)对纳米复合材料进行了表征。纳米颗粒的掺入引起了 FTIR 光谱的明显变化,证实了纳米颗粒与水凝胶基质之间的相互作用。对纳米复合材料的抗菌活性进行了评估,结果表明对不同的细菌具有显著的抑制作用,特别是对 P. mirabilis、S. aureus、P. aeruginosa 和 C. albicans 的 MgO 和 ZnO-水凝胶纳米复合材料具有显著的抑制作用,突出了它们作为抗菌剂的潜力。PEO/PEC-co-AAm 水凝胶纳米复合材料中 5wt%的 MgO、ZnO、TiO 和 CaO 分别表现出 0.896nm、0.986nm、1.250nm 和 1.980nm 的光密度(OD)值,与对照和单独的水凝胶(OD 值分别为 2.88nm 和 2.72nm)相比,具有显著的抑制效果。(MgO-、ZnO-、TiO-和 CaO-水凝胶)的抗菌活性增强,导致金黄色葡萄球菌的生长抑制率分别约为 68.89%、65.86%、56.25%和 31.94%。将纳米颗粒掺入水凝胶基质中通过防止其聚集并协同增强抗菌活性引入了新颖性。水凝胶的多孔结构和含水量促进了细菌的物理捕获,并促进了与金属氧化物纳米颗粒的接近,从而提高了相互作用和抗菌效果。此外,水凝胶吸收和捕获细菌释放的耐药化合物的能力,以及其为产生活性氧提供水的能力,进一步增强了其抗菌性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验