Special Food and Nutrition Department, Agriculture Research Center, Food Technology Research Institute, Giza, Egypt.
Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
Sci Rep. 2024 Sep 8;14(1):20894. doi: 10.1038/s41598-024-70490-8.
This study proposes an innovative approach to combat the escalating threat of antibiotic resistance in bacteria by introducing a novel ZnO-propolis nanocomposite (ZnO-P NCs). The overuse of antibiotics, particularly during events like the COVID-19 pandemic, has intensified bacterial resistance, necessitating innovative solutions. The study employs a cost-effective and controllable biosynthesis method to produce ZnO nanoparticles (ZnO-NPs), with propolis extract crucially contributing to the reduction and stabilization of Zn ions. A biodegradable nano-propolis matrix is then created by incorporating ZnO-NPs, forming the ZnO-P NCs. Structural stability is confirmed through FT-IR and Zeta potential analysis, while nanoscale properties are validated via TEM, SEM, and XRD analyses. The antimicrobial efficacy of various substances, including propolis, nano propolis, ethanolic propolis extract, ZnO-NPs, and ZnO-P NCs, is assessed against Gram-negative and Gram-positive bacteria, alongside a comparison with 28 antibiotics. Among the bacteria tested, Pseudomonas aeruginosa PAO1 ATCC15692 was more sensitive (40 mm) to the biosynthesized nanocomposite ZnO-P NCs than to ZnO-NPs (38 mm) and nanopropolis (32 mm), while Escherichia coli was resistant to nanopropolis (0 mm) than to ZnO-NPs (31 mm), and ZnO-P NCs (34 mm). The study reveals a synergy effect when combining propolis with green-synthesized ZnO-NPs in the form of ZnO-P NCs, significantly improving their efficiency against all tested bacteria, including antibiotic-resistant strains like E. coli. The nanocomposite outperforms other materials and antibiotics, demonstrating remarkable antibacterial effectiveness. SEM imaging confirms the disruption of bacterial cell membranes by ZnO-NPs and ZnO-P NCs. The study emphasizes the potential applications of ZnO-NPs integrated into biodegradable materials and underscores the significance of the zinc oxide-propolis nanocomposite in countering antimicrobial resistance. Overall, this research offers a comprehensive solution to combat multidrug-resistant bacteria, opening avenues for novel approaches in infection control.
这项研究提出了一种创新方法,通过引入新型 ZnO-蜂胶纳米复合材料(ZnO-P NCs)来对抗细菌对抗生素耐药性的不断升级的威胁。抗生素的过度使用,特别是在 COVID-19 大流行等事件期间,加剧了细菌的耐药性,因此需要创新的解决方案。该研究采用了一种经济高效且可控的生物合成方法来生产 ZnO 纳米粒子(ZnO-NPs),其中蜂胶提取物对于 Zn 离子的还原和稳定起到了关键作用。然后,通过掺入 ZnO-NPs 来创建可生物降解的纳米蜂胶基质,形成 ZnO-P NCs。通过 FT-IR 和 Zeta 电位分析确认结构稳定性,通过 TEM、SEM 和 XRD 分析验证纳米特性。评估了各种物质(包括蜂胶、纳米蜂胶、乙醇蜂胶提取物、ZnO-NPs 和 ZnO-P NCs)对革兰氏阴性和革兰氏阳性细菌的抗菌效果,并与 28 种抗生素进行了比较。在所测试的细菌中,铜绿假单胞菌 PAO1 ATCC15692 对生物合成的纳米复合材料 ZnO-P NCs 的敏感性(40 毫米)高于 ZnO-NPs(38 毫米)和纳米蜂胶(32 毫米),而大肠杆菌对纳米蜂胶(0 毫米)的耐药性高于 ZnO-NPs(31 毫米)和 ZnO-P NCs(34 毫米)。研究表明,当将蜂胶与绿色合成的 ZnO-NPs 以 ZnO-P NCs 的形式结合使用时,会产生协同效应,显著提高其对所有测试细菌的效率,包括对 E. coli 等抗生素耐药菌株。该纳米复合材料优于其他材料和抗生素,表现出显著的抗菌效果。SEM 成像证实了 ZnO-NPs 和 ZnO-P NCs 对细菌细胞膜的破坏作用。该研究强调了将 ZnO-NPs 整合到可生物降解材料中的潜在应用,并强调了氧化锌-蜂胶纳米复合材料在对抗抗微生物耐药性方面的重要性。总的来说,这项研究提供了一种对抗多药耐药菌的综合解决方案,为感染控制开辟了新的途径。