Suppr超能文献

通过利用先前的工作,将数字衍生终点纳入临床开发项目中。

Incorporating digitally derived endpoints within clinical development programs by leveraging prior work.

作者信息

Bertha Amy, Alaj Rinol, Bousnina Imein, Doyle Megan K, Friend Danielle, Kalamegham Rasika, Oliva Lauren, Knezevic Igor, Kramer Frank, Podhaisky Hans-Peter, Reimann Sven

机构信息

Bayer, 801 Pennsylvania Ave NW, Washington, DC, 20004, USA.

Regeneron, Terrytown, NJ, USA.

出版信息

NPJ Digit Med. 2023 Aug 10;6(1):139. doi: 10.1038/s41746-023-00886-9.

Abstract

Digital health technologies (DHTs) enable remote data collection, support a patient-centric approach to drug development, and provide real-time data in real-world settings. With increasing use of DHTs in clinical care and development, we expect a growing body of evidence supporting use of DHTs to capture endpoint data in clinical trials. As the body of evidence grows, it will be critical to ensure that available prior work can be leveraged. We propose a framework to reuse analytical and clinical validation, as well as verification data, generated for existing DHTs. We apply real life case studies to illustrate our proposal aimed at leveraging prior work, while applying the V3 framework (verification, analytical validation, clinical validation) and avoiding duplication. Utilizing our framework will enable stakeholders to share best practices and consistent approaches to employing these tools in clinical studies, build on each other’s work, and ultimately accelerate evidence generation demonstrating the reproducibility and value add of these new tools.

摘要

数字健康技术(DHTs)能够实现远程数据收集,支持以患者为中心的药物研发方法,并在现实环境中提供实时数据。随着DHTs在临床护理和研发中的使用日益增加,我们预计会有越来越多的证据支持在临床试验中使用DHTs来获取终点数据。随着证据的积累,确保能够利用现有的前期工作将至关重要。我们提出了一个框架,以重用为现有DHTs生成的分析和临床验证以及验证数据。我们应用实际案例研究来说明我们旨在利用前期工作的提议,同时应用V3框架(验证、分析验证、临床验证)并避免重复。利用我们的框架将使利益相关者能够分享在临床研究中使用这些工具的最佳实践和一致方法,相互借鉴工作成果,并最终加速证据生成,证明这些新工具的可重复性和附加价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb1/10415378/f3223df93c58/41746_2023_886_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验