Suppr超能文献

预后营养指数(PNI)作为围手术期缺血性卒中的潜在预测因子和干预靶点:一项回顾性队列研究。

Prognostic Nutritional Index (PNI) as a potential predictor and intervention target for perioperative ischemic stroke: a retrospective cohort study.

机构信息

Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.

Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.

出版信息

BMC Anesthesiol. 2023 Aug 10;23(1):268. doi: 10.1186/s12871-023-02216-8.

Abstract

BACKGROUND

The prognostic nutritional index (PNI) is a nutritional indicator and predictor of various diseases. However it is unclear whether PNI can be a predictor of perioperative ischemic stroke. This study aims to evaluate the association of the preoperative PNI and ischemic stroke in patients undergoing non-cardiac surgery.

METHODS

The retrospective cohort study included patients who underwent noncardiac surgery between January 2008 and August 2019. The patients were divided into PNI ≥ 38.8 and PNI < 38.8 groups according to the cut-off value of PNI. Univariate and multivariate logistic regression analyses were performed to explore the association between PNI and perioperative ischemic stroke. Subsequently, propensity score matching (PSM) analysis was performed to eliminate the confounding factors of covariates and further validate the results. Subgroup analyses were completed to assess the predictive utility of PNI for perioperative ischemic stroke in different groups.

RESULTS

Amongst 221,542 hospitalized patients enrolled, 485 (0.22%) experienced an ischemic stroke within 30 days of the surgery, 22.1% of patients were malnourished according to PNI < 38.8, and the occurrence of perioperative ischemic stroke was 0.34% (169/49055) in the PNI < 38.8 group. PNI < 38.8 was significantly associated with an increased incidence of perioperative ischemic stroke whether in univariate logistic regression analysis (OR = 1.884, 95% CI: 1.559-2.267, P < 0.001) or multivariate logistic regression analysis (OR = 1.306, 95% CI: 1.061-1.602, P = 0.011). After PSM analysis, the ORs of PNI < 38.8 group were 1.250 (95% CI: 1.000-1.556, P = 0.050) and 1.357 (95% CI: 1.077-1.704, P = 0.009) in univariate logistic regression analysis and multivariate logistic regression analysis respectively. The subgroup analysis indicated that reduced PNI was significantly associated to an increased risk of perioperative ischemic stroke in patients over 65 years old, ASA II, not taking aspirin before surgery, without a history of stroke, who had neurosurgery, non-emergency surgery, and were admitted to ICU after surgery.

CONCLUSIONS

Our study indicates that low preoperative PNI is significantly associated with a higher incidence of ischemic stroke in patients undergoing non-cardiac surgery. Preoperative PNI, as a preoperative nutritional status evaluation index, is an independent risk factor useful to predict perioperative ischemic stroke risk, which could be used as an intervenable preoperative clinical biochemical index to reduce the incidence of perioperative ischemic stroke.

摘要

背景

预后营养指数(PNI)是一种预测各种疾病的营养指标。然而,PNI 是否可以预测围手术期缺血性卒中尚不清楚。本研究旨在评估非心脏手术患者术前 PNI 与缺血性卒中的相关性。

方法

本回顾性队列研究纳入了 2008 年 1 月至 2019 年 8 月期间接受非心脏手术的患者。根据 PNI 的截断值,将患者分为 PNI≥38.8 和 PNI<38.8 组。采用单因素和多因素逻辑回归分析探讨 PNI 与围手术期缺血性卒中之间的关系。随后,进行倾向评分匹配(PSM)分析以消除协变量的混杂因素,并进一步验证结果。进行亚组分析以评估 PNI 在不同组中对围手术期缺血性卒中的预测作用。

结果

在纳入的 221542 例住院患者中,485 例(0.22%)在手术后 30 天内发生缺血性卒中,根据 PNI<38.8,22.1%的患者存在营养不良,PNI<38.8 组围手术期缺血性卒中的发生率为 0.34%(169/49055)。单因素逻辑回归分析(OR=1.884,95%CI:1.559-2.267,P<0.001)或多因素逻辑回归分析(OR=1.306,95%CI:1.061-1.602,P=0.011)均显示 PNI<38.8 与围手术期缺血性卒中的发生率显著相关。PSM 分析后,PNI<38.8 组的 OR 值在单因素逻辑回归分析中为 1.250(95%CI:1.000-1.556,P=0.050)和在多因素逻辑回归分析中为 1.357(95%CI:1.077-1.704,P=0.009)。亚组分析表明,在年龄>65 岁、ASA II 级、术前未服用阿司匹林、无卒中史、接受神经外科手术、非紧急手术以及术后入住 ICU 的患者中,低术前 PNI 与围手术期缺血性卒中风险增加显著相关。

结论

本研究表明,术前低 PNI 与非心脏手术患者缺血性卒中发生率升高显著相关。术前 PNI 作为一种术前营养状况评估指标,是预测围手术期缺血性卒中风险的独立危险因素,可作为可干预的术前临床生化指标,降低围手术期缺血性卒中的发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54e/10413636/16be14ae31dd/12871_2023_2216_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验