Colombo Monika, Chaudhry Palak, Oberholzer Yvonne, deMello Andrew J
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland.
Department of Mechanical and Production Engineering, Aarhus University, Aarhus, Denmark.
Front Bioeng Biotechnol. 2023 Jul 26;11:1204178. doi: 10.3389/fbioe.2023.1204178. eCollection 2023.
Coronary microvascular disease is one of the responsible factors for cardiac perfusion impairment. Due to diagnostic and treatment challenges, this pathology (characterized by alterations to microvasculature local hemodynamics) represents a significant yet unsolved clinical problem. Due to the poor understanding of the onset and progression of this disease, we propose a new and noninvasive strategy to quantify hemodynamic changes occurring in the microvasculature. Specifically, we here present a conceptual workflow that combines both and modelling for the analysis of the hemodynamic alterations in the microvasculature. First, we demonstrate a hybrid additive manufacturing process to fabricate circular cross-section, biocompatible fluidic networks in polytetrafluoroethylene. We then use these microfluidic devices and computational fluid dynamics to simulate different degrees of perfusion impairment. Ultimately, we show that the developed workflow defines a robust platform for the multiscale analysis of multifactorial events occurring in coronary microvascular disease.
冠状动脉微血管疾病是导致心脏灌注受损的因素之一。由于诊断和治疗方面的挑战,这种病理状况(以微血管局部血流动力学改变为特征)是一个重大但尚未解决的临床问题。由于对该疾病的发病和进展了解不足,我们提出了一种新的非侵入性策略来量化微血管中发生的血流动力学变化。具体而言,我们在此展示了一种概念性工作流程,该流程结合了 和 建模,用于分析微血管中的血流动力学改变。首先,我们展示了一种混合增材制造工艺,以在聚四氟乙烯中制造圆形横截面、生物相容性流体网络。然后,我们使用这些微流体装置和计算流体动力学来模拟不同程度的灌注损伤。最终,我们表明所开发的工作流程为冠状动脉微血管疾病中发生的多因素事件的多尺度分析定义了一个强大的平台。