Suppr超能文献

眼眶骨缺损的解剖修复:成熟的尤卡坦小型猪的骨骼几何不匹配研究。

Geometric Mismatch Promotes Anatomic Repair in Periorbital Bony Defects in Skeletally Mature Yucatan Minipigs.

机构信息

Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.

出版信息

Adv Healthc Mater. 2023 Nov;12(29):e2301944. doi: 10.1002/adhm.202301944. Epub 2023 Aug 17.

Abstract

Porous tissue-engineered 3D-printed scaffolds are a compelling alternative to autografts for the treatment of large periorbital bone defects. Matching the defect-specific geometry has long been considered an optimal strategy to restore pre-injury anatomy. However, studies in large animal models have revealed that biomaterial-induced bone formation largely occurs around the scaffold periphery. Such ectopic bone formation in the periorbital region can affect vision and cause disfigurement. To enhance anatomic reconstruction, geometric mismatches are introduced in the scaffolds used to treat full thickness zygomatic defects created bilaterally in adult Yucatan minipigs. 3D-printed, anatomically-mirrored scaffolds are used in combination with autologous stromal vascular fraction of cells (SVF) for treatment. An advanced image-registration workflow is developed to quantify the post-surgical geometric mismatch and correlate it with the spatial pattern of the regenerating bone. Osteoconductive bone growth on the dorsal and ventral aspect of the defect enhances scaffold integration with the native bone while medio-lateral bone growth leads to failure of the scaffolds to integrate. A strong positive correlation is found between geometric mismatch and orthotopic bone deposition at the defect site. The data suggest that strategic mismatch >20% could improve bone scaffold design to promote enhanced regeneration, osseointegration, and long-term scaffold survivability.

摘要

多孔组织工程 3D 打印支架是治疗大眼眶骨缺损的自体移植物的一种很有吸引力的替代方法。长期以来,匹配特定于缺损的几何形状一直被认为是恢复损伤前解剖结构的最佳策略。然而,在大型动物模型中的研究表明,生物材料诱导的骨形成主要发生在支架的外围。眼眶区域的这种异位骨形成会影响视力并导致毁容。为了增强解剖重建,在用于治疗成年尤卡坦小型猪双侧全层颧骨缺损的支架中引入了几何不匹配。使用 3D 打印的解剖镜面对称支架与自体基质血管成分 (SVF) 联合使用进行治疗。开发了一种先进的图像配准工作流程来量化手术后的几何不匹配,并将其与再生骨的空间模式相关联。缺陷背侧和腹侧的骨诱导生长增强了支架与天然骨的整合,而中侧骨生长导致支架无法整合。在缺陷部位,几何不匹配与异位骨沉积之间存在很强的正相关关系。数据表明,策略性不匹配 >20% 可以改进骨支架设计,以促进增强再生、骨整合和长期支架存活率。

相似文献

1
Geometric Mismatch Promotes Anatomic Repair in Periorbital Bony Defects in Skeletally Mature Yucatan Minipigs.
Adv Healthc Mater. 2023 Nov;12(29):e2301944. doi: 10.1002/adhm.202301944. Epub 2023 Aug 17.
3
Engineering 3D Printed Bioceramic Scaffolds to Reconstruct Critical-Sized Calvaria Defects in a Skeletally Immature Pig Model.
Plast Reconstr Surg. 2023 Aug 1;152(2):270e-280e. doi: 10.1097/PRS.0000000000010258. Epub 2023 Feb 1.
8
Form and functional repair of long bone using 3D-printed bioactive scaffolds.
J Tissue Eng Regen Med. 2018 Sep;12(9):1986-1999. doi: 10.1002/term.2733. Epub 2018 Aug 24.

引用本文的文献

1
Engineered stromal vascular fraction for tissue regeneration.
Front Pharmacol. 2025 Mar 13;16:1510508. doi: 10.3389/fphar.2025.1510508. eCollection 2025.

本文引用的文献

1
A machine learning-based multiscale model to predict bone formation in scaffolds.
Nat Comput Sci. 2021 Aug;1(8):532-541. doi: 10.1038/s43588-021-00115-x. Epub 2021 Aug 20.
2
PCL strut-like scaffolds appear superior to gyroid in terms of bone regeneration within a long bone large defect: An study.
Front Bioeng Biotechnol. 2022 Sep 23;10:995266. doi: 10.3389/fbioe.2022.995266. eCollection 2022.
3
A mechanobiological computer optimization framework to design scaffolds to enhance bone regeneration.
Front Bioeng Biotechnol. 2022 Sep 7;10:980727. doi: 10.3389/fbioe.2022.980727. eCollection 2022.
5
A robust, autonomous, volumetric quality assurance method for 3D printed porous scaffolds.
3D Print Med. 2022 Apr 6;8(1):9. doi: 10.1186/s41205-022-00135-x.
6
Oxygen generating scaffolds regenerate critical size bone defects.
Bioact Mater. 2021 Nov 10;13:64-81. doi: 10.1016/j.bioactmat.2021.11.002. eCollection 2022 Jul.
8
3D-printed oxygen-releasing scaffolds improve bone regeneration in mice.
Biomaterials. 2022 Jan;280:121318. doi: 10.1016/j.biomaterials.2021.121318. Epub 2021 Dec 11.
9
Scaffold-guided bone regeneration in large volume tibial segmental defects.
Bone. 2021 Dec;153:116163. doi: 10.1016/j.bone.2021.116163. Epub 2021 Aug 28.
10
The limit of tolerable micromotion for implant osseointegration: a systematic review.
Sci Rep. 2021 May 24;11(1):10797. doi: 10.1038/s41598-021-90142-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验