Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
Medicine (Baltimore). 2023 Aug 11;102(32):e34611. doi: 10.1097/MD.0000000000034611.
Cancer-associated fibroblasts (CAFs), the central players in the tumor microenvironment (TME), can promote tumor progression and metastasis via various functions. However, the properties of CAFs in prostate cancer (PCa) have not been fully assessed. Therefore, we aimed to examine the CAF characteristics in PCa and construct a CAF-derived signature to predict PCa prognosis. CAFs were identified using single-cell RNA sequencing (scRNA-seq) data from 3 studies. We performed the FindAllMarkers function to extract CAF marker genes and constructed a signature to predict the biochemical relapse-free survival (bRFS) of PCa in the Cancer Genome Atlas (TCGA) cohort. Subsequently, different algorithms were applied to reveal the differences of the TME, immune infiltration, treatment responses in the high- and low-risk groups. Additionally, the CAF heterogeneity was assessed in PCa, which were confirmed by the functional enrichment analysis, gene set enrichment analysis (GSEA), and AUCell method. The scRNA-seq analysis identified a CAF cluster with 783 cells and determined 183 CAF marker genes. Cell-cell communication revealed extensive interactions between fibroblasts and immune cells. A CAF-related prognostic model, containing 7 genes (ASPN, AEBP1, ALDH1A1, BGN, COL1A1, PAGE4 and RASD1), was developed to predict bRFS and validated by 4 independent bulk RNA-seq cohorts. Moreover, the high-risk group of the signature score connected with an immunosuppressive TME, such as a higher level of M2 macrophages and lower levels of plasma cells and CD8+ T cells, and a reduced reaction rate for immunotherapy compared with low-risk group. After re-clustering CAFs via unsupervised clustering, we revealed 3 biologically distinct CAF subsets, namely myofibroblast-like CAFs (myCAFs), immune and inflammatory CAFs (iCAFs) and antigen-presenting CAFs (apCAFs). In conclusion, the CAF-derived signature, the first of its kind, can effectively predict PCa prognosis and serve as an indicator for immunotherapy. Furthermore, our study identified 3 CAF subpopulations with distinct functions in PCa.
癌症相关成纤维细胞(CAFs)是肿瘤微环境(TME)的核心成员,可通过多种功能促进肿瘤的进展和转移。然而,前列腺癌(PCa)中 CAF 的特性尚未得到充分评估。因此,我们旨在研究 PCa 中 CAF 的特征,并构建 CAF 衍生的特征以预测 PCa 的预后。使用来自 3 项研究的单细胞 RNA 测序(scRNA-seq)数据鉴定 CAFs。我们执行了 FindAllMarkers 功能来提取 CAF 标记基因,并构建了一个预测癌症基因组图谱(TCGA)队列中 PCa 生化无复发生存(bRFS)的特征。随后,应用不同的算法来揭示高风险和低风险组之间的 TME、免疫浸润和治疗反应的差异。此外,评估了 PCa 中的 CAF 异质性,通过功能富集分析、基因集富集分析(GSEA)和 AUCell 方法进行了验证。scRNA-seq 分析确定了一个包含 783 个细胞的 CAF 簇,并确定了 183 个 CAF 标记基因。细胞间通讯揭示了成纤维细胞和免疫细胞之间广泛的相互作用。建立了一个包含 7 个基因(ASPN、AEBP1、ALDH1A1、BGN、COL1A1、PAGE4 和 RASD1)的与 CAF 相关的预后模型,通过 4 个独立的批量 RNA-seq 队列进行验证。此外,特征评分的高风险组与免疫抑制性 TME 相关,例如 M2 巨噬细胞水平较高,浆细胞和 CD8+T 细胞水平较低,免疫治疗反应率较低。通过无监督聚类重新聚类 CAFs 后,我们揭示了 3 种具有不同生物学特征的 CAF 亚群,即肌成纤维细胞样 CAFs(myCAFs)、免疫和炎症性 CAFs(iCAFs)和抗原呈递 CAFs(apCAFs)。总之,首个 CAF 衍生的特征可以有效地预测 PCa 的预后,并作为免疫治疗的指标。此外,我们的研究确定了 PCa 中具有不同功能的 3 种 CAF 亚群。