Suppr超能文献

细胞类型特异性感染性和组织组成对 SARS-CoV-2 感染人呼吸道上皮细胞内动态的影响。

Influence of cell type specific infectivity and tissue composition on SARS-CoV-2 infection dynamics within human airway epithelium.

机构信息

BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.

Center for Information Services and High Performance Computing, TU Dresden, Dresden, Germany.

出版信息

PLoS Comput Biol. 2023 Aug 11;19(8):e1011356. doi: 10.1371/journal.pcbi.1011356. eCollection 2023 Aug.

Abstract

Human airway epithelium (HAE) represents the primary site of viral infection for SARS-CoV-2. Comprising different cell populations, a lot of research has been aimed at deciphering the major cell types and infection dynamics that determine disease progression and severity. However, the cell type-specific replication kinetics, as well as the contribution of cellular composition of the respiratory epithelium to infection and pathology are still not fully understood. Although experimental advances, including Air-liquid interface (ALI) cultures of reconstituted pseudostratified HAE, as well as lung organoid systems, allow the observation of infection dynamics under physiological conditions in unprecedented level of detail, disentangling and quantifying the contribution of individual processes and cells to these dynamics remains challenging. Here, we present how a combination of experimental data and mathematical modelling can be used to infer and address the influence of cell type specific infectivity and tissue composition on SARS-CoV-2 infection dynamics. Using a stepwise approach that integrates various experimental data on HAE culture systems with regard to tissue differentiation and infection dynamics, we develop an individual cell-based model that enables investigation of infection and regeneration dynamics within pseudostratified HAE. In addition, we present a novel method to quantify tissue integrity based on image data related to the standard measures of transepithelial electrical resistance measurements. Our analysis provides a first aim of quantitatively assessing cell type specific infection kinetics and shows how tissue composition and changes in regeneration capacity, as e.g. in smokers, can influence disease progression and pathology. Furthermore, we identified key measurements that still need to be assessed in order to improve inference of cell type specific infection kinetics and disease progression. Our approach provides a method that, in combination with additional experimental data, can be used to disentangle the complex dynamics of viral infection and immunity within human airway epithelial culture systems.

摘要

人类气道上皮(HAE)是 SARS-CoV-2 病毒感染的主要部位。由不同的细胞群体组成,大量的研究旨在破译决定疾病进展和严重程度的主要细胞类型和感染动态。然而,细胞类型特异性复制动力学,以及呼吸道上皮细胞成分对感染和病理学的贡献仍然不完全清楚。尽管实验进展,包括重建的假复层 HAE 的气液界面(ALI)培养以及肺类器官系统,允许在前所未有的细节水平下观察生理条件下的感染动态,但分离和量化单个过程和细胞对这些动态的贡献仍然具有挑战性。在这里,我们展示了如何将实验数据和数学模型相结合,推断和解决细胞类型特异性感染性和组织组成对 SARS-CoV-2 感染动力学的影响。我们使用一种逐步的方法,将关于组织分化和感染动力学的各种 HAE 培养系统的实验数据与数学模型相结合,开发了一种基于个体细胞的模型,该模型能够研究假复层 HAE 中的感染和再生动态。此外,我们提出了一种基于与跨上皮电阻测量的标准测量相关的图像数据来量化组织完整性的新方法。我们的分析提供了定量评估细胞类型特异性感染动力学的第一个目标,并展示了组织组成和再生能力的变化(例如在吸烟者中)如何影响疾病进展和病理学。此外,我们确定了为了改进对细胞类型特异性感染动力学和疾病进展的推断,仍然需要评估的关键测量。我们的方法提供了一种方法,该方法可以与其他实验数据结合使用,以分离人类气道上皮培养系统中病毒感染和免疫的复杂动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aca9/10446191/9575a20e39e9/pcbi.1011356.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验