Suppr超能文献

临床决策支持系统认知与接受度的差异:万古霉素剂量人工智能的实施。

Discrepancy between perceptions and acceptance of clinical decision support Systems: implementation of artificial intelligence for vancomycin dosing.

机构信息

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.

ICU, DongE Hospital Affiliated to Shandong First Medical University, Liaocheng, Shandong, 252200, China.

出版信息

BMC Med Inform Decis Mak. 2023 Aug 11;23(1):157. doi: 10.1186/s12911-023-02254-9.

Abstract

BACKGROUND

Artificial intelligence (AI) tools are more effective if accepted by clinicians. We developed an AI-based clinical decision support system (CDSS) to facilitate vancomycin dosing. This qualitative study assesses clinicians' perceptions regarding CDSS implementation.

METHODS

Thirteen semi-structured interviews were conducted with critical care pharmacists, at Mayo Clinic (Rochester, MN), from March through April 2020. Eight clinical cases were discussed with each pharmacist (N = 104). Following initial responses, we revealed the CDSS recommendations to assess participants' reactions and feedback. Interviews were audio-recorded, transcribed, and summarized.

RESULTS

The participants reported considerable time and effort invested daily in individualizing vancomycin therapy for hospitalized patients. Most pharmacists agreed that such a CDSS could favorably affect (N = 8, 62%) or enhance (9, 69%) their ability to make vancomycin dosing decisions. In case-based evaluations, pharmacists' empiric doses differed from the CDSS recommendation in most cases (88/104, 85%). Following revealing the CDSS recommendations, we noted 78% (69/88) discrepant doses. In discrepant cases, pharmacists indicated they would not alter their recommendations. The reasons for declining the CDSS recommendation were general distrust of CDSS, lack of dynamic evaluation and in-depth analysis, inability to integrate all clinical data, and lack of a risk index.

CONCLUSION

While pharmacists acknowledged enthusiasm about the advantages of AI-based models to improve drug dosing, they were reluctant to integrate the tool into clinical practice. Additional research is necessary to determine the optimal approach to implementing CDSS at the point of care acceptable to clinicians and effective at improving patient outcomes.

摘要

背景

如果被临床医生接受,人工智能 (AI) 工具会更有效。我们开发了一种基于 AI 的临床决策支持系统 (CDSS) 来辅助万古霉素剂量调整。这项定性研究评估了临床医生对 CDSS 实施的看法。

方法

2020 年 3 月至 4 月,在明尼苏达州罗切斯特市的梅奥诊所,对 13 名重症监护药剂师进行了 13 次半结构式访谈。每位药剂师讨论了 8 个临床病例(N=104)。在初始回复后,我们展示了 CDSS 建议,以评估参与者的反应和反馈。访谈进行了录音、转录和总结。

结果

参与者报告称,他们每天在为住院患者个体化万古霉素治疗方面投入了大量时间和精力。大多数药剂师同意,这样的 CDSS 可以(N=8,62%)或增强(9,69%)他们做出万古霉素剂量决策的能力。在基于案例的评估中,药剂师的经验剂量与 CDSS 建议在大多数情况下(88/104,85%)不同。在揭示 CDSS 建议后,我们注意到 78%(69/88)的剂量不一致。在不一致的情况下,药剂师表示他们不会改变他们的建议。拒绝 CDSS 建议的原因包括普遍不信任 CDSS、缺乏动态评估和深入分析、无法整合所有临床数据以及缺乏风险指数。

结论

虽然药剂师承认对基于 AI 的模型改善药物剂量调整的优势感到兴奋,但他们不愿意将该工具整合到临床实践中。需要进一步研究以确定在临床实践中接受临床医生并有效改善患者结局的最佳方法来实施 CDSS。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de0a/10416522/c6897040bbbb/12911_2023_2254_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验