Suppr超能文献

使用急诊科就诊时的生物临床标志物,通过机器学习方法预测创伤性脑损伤患者的院内死亡率

Machine Learning Approach for the Prediction of In-Hospital Mortality in Traumatic Brain Injury Using Bio-Clinical Markers at Presentation to the Emergency Department.

作者信息

Mekkodathil Ahammed, El-Menyar Ayman, Naduvilekandy Mashhood, Rizoli Sandro, Al-Thani Hassan

机构信息

Clinical Research, Trauma and Vascular Surgery, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar.

Clinical Medicine, Weill Cornell Medical College, Doha P.O. Box 24144, Qatar.

出版信息

Diagnostics (Basel). 2023 Aug 5;13(15):2605. doi: 10.3390/diagnostics13152605.

Abstract

BACKGROUND

Accurate prediction of in-hospital mortality is essential for better management of patients with traumatic brain injury (TBI). Machine learning (ML) algorithms have been shown to be effective in predicting clinical outcomes. This study aimed to identify predictors of in-hospital mortality in TBI patients using ML algorithms.

MATERIALS AND METHOD

A retrospective study was performed using data from both the trauma registry and electronic medical records among TBI patients admitted to the Hamad Trauma Center in Qatar between June 2016 and May 2021. Thirteen features were selected for four ML models including a Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and Extreme Gradient Boosting (XgBoost), to predict the in-hospital mortality.

RESULTS

A dataset of 922 patients was analyzed, of which 78% survived and 22% died. The AUC scores for SVM, LR, XgBoost, and RF models were 0.86, 0.84, 0.85, and 0.86, respectively. XgBoost and RF had good AUC scores but exhibited significant differences in log loss between the training and testing sets (% difference in logloss of 79.5 and 41.8, respectively), indicating overfitting compared to the other models. The feature importance trend across all models indicates that aPTT, INR, ISS, prothrombin time, and lactic acid are the most important features in prediction. Magnesium also displayed significant importance in the prediction of mortality among serum electrolytes.

CONCLUSIONS

SVM was found to be the best-performing ML model in predicting the mortality of TBI patients. It had the highest AUC score and did not show overfitting, making it a more reliable model compared to LR, XgBoost, and RF.

摘要

背景

准确预测创伤性脑损伤(TBI)患者的院内死亡率对于更好地管理此类患者至关重要。机器学习(ML)算法已被证明在预测临床结果方面有效。本研究旨在使用ML算法识别TBI患者院内死亡率的预测因素。

材料与方法

采用回顾性研究,使用2016年6月至2021年5月期间卡塔尔哈马德创伤中心收治的TBI患者的创伤登记数据和电子病历数据。为支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)和极端梯度提升(XgBoost)这四种ML模型选择了13个特征,以预测院内死亡率。

结果

分析了922例患者的数据集,其中78%存活,22%死亡。SVM、LR、XgBoost和RF模型的AUC得分分别为0.86、0.84、0.85和0.86。XgBoost和RF的AUC得分较好,但训练集和测试集之间的对数损失存在显著差异(对数损失差异百分比分别为79.5和41.8),表明与其他模型相比存在过拟合。所有模型的特征重要性趋势表明,活化部分凝血活酶时间(aPTT)、国际标准化比值(INR)、损伤严重度评分(ISS)、凝血酶原时间和乳酸是预测中最重要的特征。镁在血清电解质中对死亡率的预测也显示出显著重要性。

结论

发现SVM是预测TBI患者死亡率表现最佳的ML模型。它具有最高的AUC得分,且未显示过拟合,与LR、XgBoost和RF相比,它是一个更可靠的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b0/10417008/e8a35f688d16/diagnostics-13-02605-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验