Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 750-07 Uppsala, Sweden.
Instituto de Bioquımica Vegetal y Fotosıntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Cientıficas, 41092 Sevilla, Spain.
Int J Mol Sci. 2023 Aug 1;24(15):12300. doi: 10.3390/ijms241512300.
Autophagy is a catabolic pathway capable of degrading cellular components ranging from individual molecules to organelles. Autophagy helps cells cope with stress by removing superfluous or hazardous material. In a previous work, we demonstrated that transcriptional upregulation of two autophagy-related genes, and , in positively affected agronomically important traits: biomass, seed yield, tolerance to pathogens and oxidative stress. Although the occurrence of these traits correlated with enhanced autophagic activity, it is possible that autophagy-independent roles of ATG5 and ATG7 also contributed to the phenotypes. In this study, we employed affinity purification and LC-MS/MS to identify the interactome of wild-type ATG5 and its autophagy-inactive substitution mutant, ATG5 Here we present the first interactome of plant ATG5, encompassing not only known autophagy regulators but also stress-response factors, components of the ubiquitin-proteasome system, proteins involved in endomembrane trafficking, and potential partners of the nuclear fraction of ATG5. Furthermore, we discovered post-translational modifications, such as phosphorylation and acetylation present on ATG5 complex components that are likely to play regulatory functions. These results strongly indicate that plant ATG5 complex proteins have roles beyond autophagy itself, opening avenues for further investigations on the complex roles of autophagy in plant growth and stress responses.
自噬是一种分解代谢途径,能够降解从单个分子到细胞器等细胞成分。自噬有助于细胞通过去除多余或有害的物质来应对压力。在之前的工作中,我们证明了两个自噬相关基因 和 在 中的转录上调正向影响了重要的农艺性状:生物量、种子产量、对病原体和氧化应激的耐受性。尽管这些性状的发生与增强的自噬活性相关,但 ATG5 和 ATG7 的自噬非依赖性作用也可能对表型有贡献。在这项研究中,我们采用亲和纯化和 LC-MS/MS 来鉴定野生型 ATG5 及其自噬失活替代突变体 ATG5 的相互作用组。在这里,我们呈现了植物 ATG5 的第一个相互作用组,不仅包括已知的自噬调节剂,还包括应激反应因子、泛素-蛋白酶体系统的组成部分、参与内膜运输的蛋白质以及 ATG5 核部分的潜在伴侣。此外,我们发现了 ATG5 复合物成分上存在的翻译后修饰,如磷酸化和乙酰化,这些修饰可能具有调节功能。这些结果强烈表明,植物 ATG5 复合物蛋白的作用超出了自噬本身,为进一步研究自噬在植物生长和应激反应中的复杂作用开辟了途径。