Suppr超能文献

美国中西部生猪养殖系统中预测仔猪死亡率的预测模型的实地应用

Field Implementation of Forecasting Models for Predicting Nursery Mortality in a Midwestern US Swine Production System.

作者信息

Magalhaes Edison S, Zhang Danyang, Wang Chong, Thomas Pete, Moura Cesar A A, Holtkamp Derald J, Trevisan Giovani, Rademacher Christopher, Silva Gustavo S, Linhares Daniel C L

机构信息

Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.

Department of Statistics, College of Liberal Arts and Sciences, Iowa State University, Ames, IA 50011, USA.

出版信息

Animals (Basel). 2023 Jul 26;13(15):2412. doi: 10.3390/ani13152412.

Abstract

The performance of five forecasting models was investigated for predicting nursery mortality using the master table built for 3242 groups of pigs (~13 million animals) and 42 variables, which concerned the pre-weaning phase of production and conditions at placement in growing sites. After training and testing each model's performance through cross-validation, the model with the best overall prediction results was the Support Vector Machine model in terms of Root Mean Squared Error (RMSE = 0.406), Mean Absolute Error (MAE = 0.284), and Coefficient of Determination (R = 0.731). Subsequently, the forecasting performance of the SVM model was tested on a new dataset containing 72 new groups, simulating ongoing and near real-time forecasting analysis. Despite a decrease in R values on the new dataset (R = 0.554), the model demonstrated high accuracy (77.78%) for predicting groups with high (>5%) or low (<5%) nursery mortality. This study demonstrated the capability of forecasting models to predict the nursery mortality of commercial groups of pigs using pre-weaning information and stocking condition variables collected post-placement in nursery sites.

摘要

使用为3242组猪(约1300万头)构建的主表和42个变量,研究了五种预测模型在预测保育期死亡率方面的性能,这些变量涉及断奶前的生产阶段以及转入育肥场地时的条件。通过交叉验证对每个模型的性能进行训练和测试后,就均方根误差(RMSE = 0.406)、平均绝对误差(MAE = 0.284)和决定系数(R = 0.731)而言,总体预测结果最佳的模型是支持向量机模型。随后,在一个包含72个新组的新数据集上测试了支持向量机模型的预测性能,模拟了正在进行的近乎实时的预测分析。尽管新数据集上的R值有所下降(R = 0.554),但该模型在预测保育期死亡率高(>5%)或低(<5%)的组时仍显示出较高的准确性(77.78%)。本研究证明了预测模型能够利用断奶前信息和转入保育场地后收集的饲养条件变量来预测商业猪群的保育期死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c77/10417698/e80da155cb38/animals-13-02412-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验