Suppr超能文献

GACN:用于平衡植物病害数据集和植物病害识别的生成对抗分类网络。

GACN: Generative Adversarial Classified Network for Balancing Plant Disease Dataset and Plant Disease Recognition.

机构信息

School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China.

Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China.

出版信息

Sensors (Basel). 2023 Aug 1;23(15):6844. doi: 10.3390/s23156844.

Abstract

Plant diseases are a critical threat to the agricultural sector. Therefore, accurate plant disease classification is important. In recent years, some researchers have used synthetic images of GAN to enhance plant disease recognition accuracy. In this paper, we propose a generative adversarial classified network (GACN) to further improve plant disease recognition accuracy. The GACN comprises a generator, discriminator, and classifier. The proposed model can not only enhance convolutional neural network performance by generating synthetic images to balance plant disease datasets but the GACN classifier can also be directly applied to plant disease recognition tasks. Experimental results on the PlantVillage and AI Challenger 2018 datasets show that the contribution of the proposed method to improve the discriminability of the convolution neural network is greater than that of the label-conditional methods of CGAN, ACGAN, BAGAN, and MFC-GAN. The accuracy of the trained classifier for plant disease recognition is also better than that of the plant disease recognition models studied on public plant disease datasets. In addition, we conducted several experiments to observe the effects of different numbers and resolutions of synthetic images on the discriminability of convolutional neural network.

摘要

植物病害是农业领域的重大威胁。因此,准确的植物病害分类至关重要。近年来,一些研究人员使用 GAN 的合成图像来提高植物病害识别的准确性。在本文中,我们提出了一种生成对抗分类网络(GACN),以进一步提高植物病害识别的准确性。GACN 由生成器、鉴别器和分类器组成。所提出的模型不仅可以通过生成合成图像来平衡植物病害数据集,从而提高卷积神经网络的性能,而且 GACN 分类器也可以直接应用于植物病害识别任务。在 PlantVillage 和 AI Challenger 2018 数据集上的实验结果表明,与 CGAN、ACGAN、BAGAN 和 MFC-GAN 等基于标签条件的方法相比,该方法对提高卷积神经网络的辨别能力的贡献更大。所训练的植物病害识别分类器的准确性也优于在公共植物病害数据集上研究的植物病害识别模型。此外,我们进行了几项实验来观察不同数量和分辨率的合成图像对卷积神经网络辨别能力的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b1f/10422207/0781754c46e2/sensors-23-06844-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验