Department of Radio Electronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, 61600 Brno, Czech Republic.
EBIS, spol. s r.o., Krizikova 2962/70a, 61200 Brno, Czech Republic.
Sensors (Basel). 2023 Aug 7;23(15):7012. doi: 10.3390/s23157012.
Face recognition has become an integral part of modern security processes. This paper introduces an optimization approach for the quantile interval method (QIM), a promising classifier learning technique used in face recognition to create face templates and improve recognition accuracy. Our research offers a three-fold contribution to the field. Firstly, (i) we strengthened the evidence that QIM outperforms other contemporary template creation approaches. For this reason, we investigate seven template creation methods, which include four cluster description-based methods and three estimation-based methods. Further, (ii) we extended testing; we use a nearly four times larger database compared to the previous study, which includes a new set, and we report the recognition performance on this extended database. Additionally, we distinguish between open- and closed-set identification. Thirdly, (iii) we perform an evaluation of the cluster estimation-based method (specifically QIM) with an in-depth analysis of its parameter setup in order to make its implementation feasible. We provide instructions and recommendations for the correct parameter setup. Our research confirms that QIM's application in template creation improves recognition performance. In the case of automatic application and optimization of QIM parameters, improvement recognition is about 4-10% depending on the dataset. In the case of a too general dataset, QIM also provides an improvement, but the incorporation of QIM into an automated algorithm is not possible, since QIM, in this case, requires manual setting of optimal parameters. This research contributes to the advancement of secure and accurate face recognition systems, paving the way for its adoption in various security applications.
人脸识别已成为现代安全流程的重要组成部分。本文介绍了一种用于分位数区间方法(QIM)的优化方法,这是一种在人脸识别中用于创建人脸模板和提高识别准确性的有前途的分类器学习技术。我们的研究为该领域做出了三重贡献。首先,(i)我们加强了证据,证明 QIM 优于其他当代模板创建方法。为此,我们研究了七种模板创建方法,包括四种基于聚类描述的方法和三种基于估计的方法。此外,(ii)我们扩展了测试;我们使用了一个几乎是之前研究的四倍大的数据库,其中包括一个新的数据集,并报告了这个扩展数据库上的识别性能。此外,我们区分了开放式和封闭式识别。第三,(iii)我们对基于聚类估计的方法(特别是 QIM)进行了评估,对其参数设置进行了深入分析,以使其实用化。我们为正确的参数设置提供了说明和建议。我们的研究证实,QIM 在模板创建中的应用可以提高识别性能。在自动应用和优化 QIM 参数的情况下,根据数据集的不同,识别率的提高约为 4-10%。在数据集过于一般的情况下,QIM 也可以提供改进,但由于 QIM 在这种情况下需要手动设置最佳参数,因此无法将 QIM 纳入自动化算法中。这项研究为安全、准确的人脸识别系统的发展做出了贡献,为其在各种安全应用中的采用铺平了道路。