Suppr超能文献

用于环境印刷的基于FA的碘化铅钙钛矿太阳能电池的结晶控制

Crystallization Control for Ambient Printed FA-Based Lead Triiodide Perovskite Solar Cells.

作者信息

Yin Lei, Huang Wenliang, Fang Junjie, Ding Zicheng, Jin Chengkai, Du Yachao, Lang Lei, Yang Tinghuan, Wang Shumei, Cai Weilun, Liu Chou, Zhao Guangtao, Yang Yingguo, Liu Shengzhong Frank, Bu Tongle, Zhao Kui

机构信息

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, China.

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China.

出版信息

Adv Mater. 2023 Dec;35(51):e2303384. doi: 10.1002/adma.202303384. Epub 2023 Nov 8.

Abstract

Upscalable printing of high-performance and stable perovskite solar cells (PSCs) is highly desired for commercialization. However, the efficiencies of printed PSCs lag behind those of their lab-scale spin-coated counterparts owing to the lack of systematic understanding and control over perovskite crystallization dynamics. Here, the controlled crystallization dynamics achieved using an additive 1-butylpyridine tetrafluoroborate (BPyBF ) for high-quality ambient printed α-formamidinium lead triiodide (FAPbI ) perovskite films are reported. Using in situ grazing-incidence wide-angle X-ray scattering and optical diagnostics, the spontaneous formation of α-FAPbI from precursors during printing without the involvement of  δ-FAPbI is demonstrated. The addition of BPyBF delays the crystallization onset of α-FAPbI , enhances the conversion from sol-gel to perovskite, and reduces stacking defects during printing. Therefore, the altered crystallization results in fewer voids, larger grains, and less trap-induced recombination loss within printed films. The printed PSCs yield high power conversion efficiencies of 23.50% and 21.60% for a 0.09 cm area device and a 5 cm × 5 cm-area module, respectively. Improved device stability is further demonstrated, i.e., approximately 94% of the initial efficiency is retained for over 2400 h under ambient conditions without encapsulation. This study provides an effective crystallization control method for the ambient printing manufacture of large-area high-performance PSCs.

摘要

高性能且稳定的钙钛矿太阳能电池(PSC)的可扩展印刷对于商业化来说是非常必要的。然而,由于对钙钛矿结晶动力学缺乏系统的理解和控制,印刷PSC的效率落后于实验室规模旋涂的同类产品。在此,报道了使用添加剂四氟硼酸1-丁基吡啶鎓(BPyBF)实现的可控结晶动力学,用于高质量的环境印刷α-甲脒碘化铅(FAPbI)钙钛矿薄膜。通过原位掠入射广角X射线散射和光学诊断,证明了在印刷过程中前体自发形成α-FAPbI而不涉及δ-FAPbI。BPyBF的添加延迟了α-FAPbI的结晶起始,增强了从溶胶-凝胶到钙钛矿的转化,并减少了印刷过程中的堆积缺陷。因此,改变的结晶导致印刷薄膜中的空隙更少、晶粒更大以及陷阱诱导的复合损失更小。对于面积为0.09平方厘米的器件和5厘米×5厘米面积的模块,印刷PSC的功率转换效率分别高达23.50%和21.60%。进一步证明了器件稳定性的提高,即在环境条件下无封装的情况下,超过2400小时可保留约94%的初始效率。本研究为大面积高性能PSC的环境印刷制造提供了一种有效的结晶控制方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验