Suppr超能文献

基于蛋白质的发光器件的基因编码寡聚化。

Genetically Encoded Oligomerization for Protein-Based Lighting Devices.

机构信息

Chair of Biogenic Functional Materials, Technical University of Munich, Schulgasse, 22, 94315, Straubing, Germany.

Departamento de Química, Universidad de Navarra, Pamplona, 31080, Spain.

出版信息

Adv Mater. 2023 Nov;35(48):e2303993. doi: 10.1002/adma.202303993. Epub 2023 Oct 17.

Abstract

Implementing proteins in optoelectronics represents a fresh idea toward a sustainable new class of materials with bio-functions that can replace environmentally unfriendly and/or toxic components without losing device performance. However, their native activity (fluorescence, catalysis, and so on) is easily lost under device fabrication/operation as non-native environments (organic solvents, organic/inorganic interfaces, and so on) and severe stress (temperature, irradiation, and so on) are involved. Herein, a gift bow genetically-encoded macro-oligomerization strategy is showcased to promote protein-protein solid interaction enabling i) high versatility with arbitrary proteins, ii) straightforward electrostatic driven control of the macro-oligomer size by ionic strength, and iii) stabilities over months in pure organic solvents and stress scenarios, allowing to integrate them into classical water-free polymer-based materials/components for optoelectronics. Indeed, rainbow-/white-emitting protein-based light-emitting diodes are fabricated, attesting a first-class performance compared to those with their respective native proteins: significantly enhanced device stabilities from a few minutes up to 100 h keeping device efficiency at high power driving conditions. Thus, the oligomerization concept is a solid bridge between biological systems and materials/components to meet expectations in bio-optoelectronics, in general, and lighting schemes, in particular.

摘要

在光电子学中实现蛋白质代表了一种全新的理念,即开发具有生物功能的可持续新型材料,这些材料可以替代对环境有害和/或有毒的成分,而不会降低器件性能。然而,由于涉及非原生环境(有机溶剂、有机/无机界面等)和严重的压力(温度、辐射等),它们的天然活性(荧光、催化等)在器件制造/操作过程中很容易丢失。在此,展示了一种遗传编码的大分子组装策略,以促进蛋白质-蛋白质的固态相互作用,从而实现:i)具有任意蛋白质的高通用性,ii)通过离子强度对大分子尺寸的直接静电驱动控制,以及 iii)在纯有机溶剂和压力条件下数月的稳定性,从而将其整合到经典的无水聚合物基材料/组件中用于光电子学。事实上,已经制备了彩虹/白色发射的蛋白质基发光二极管,与各自的天然蛋白质相比,其性能优异:在高功率驱动条件下,器件效率保持在较高水平,器件稳定性从几分钟提高到 100 小时。因此,该聚合概念是生物系统和材料/组件之间的坚实桥梁,可满足生物光电子学、特别是照明方案的期望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验