Suppr超能文献

用于高性能钠离子电池的具有异质结界面的三维(3D)有序大孔双金属(锰,铁)硒化物/碳复合材料

Three-Dimensional (3D) Ordered Macroporous Bimetallic (Mn,Fe) Selenide/Carbon Composite with Heterojunction Interface for High-Performance Sodium Ion Batteries.

作者信息

Wang Jiuwu, Yang Xianfeng, Yang Caini, Dai Yi, Chen Siyao, Sun Xian, Huang Chenguang, Wu Yinping, Situ Yue, Huang Hong

机构信息

School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.

Analytical and Testing Centre, South China University of Technology, Guangzhou 510640, People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2023 Aug 23;15(33):40100-40114. doi: 10.1021/acsami.3c07951. Epub 2023 Aug 12.

Abstract

Transition-metal selenides have captured significant research attention as anode materials for sodium ion batteries (SIBs) due to their high theoretical specific capacities and excellent electronic conductivity. However, volumetric expansion and inferior cycle life still hinder their practical application. Herein, a three-dimensional (3D) ordered macroporous bimetallic (Mn,Fe) selenide modified by a carbon layer (denoted as 3DOM-MnFeSe@C) composite containing a heterojunction interface is fabricated through selenizing a 3D ordered macroporous Mn-based Prussian Blue analogue single crystal. The 3DOM-MnFeSe@C exhibits hierarchically porous architecture with enhanced mass-transfer efficiency; MnSe and FeSe particles are encapsulated into macroporous carbon framework, which can significantly promote the electronic conductivity and maintain the structural integrity. The density functional theory calculation indicates that the heterojunction interface between MnSe and FeSe has been successfully engineered so that Na can be readily adsorbed and rapidly converted, thus promoting the reaction kinetics and extending the cyclic life. As expected, the 3DOM-MnFeSe@C composite delivers excellent rate performance (277.6 mA h g at 10 A g), and prolonged cycling life (191.6 mA h g even after 1000 cycles at 2 A g) as a sodium storage anode. The sodium storage mechanism of the composite was further investigated by in situ X-ray diffraction and ex situ high-resolution transmission electron microscopy characterization techniques.

摘要

过渡金属硒化物因其高理论比容量和优异的电子导电性,作为钠离子电池(SIBs)的负极材料受到了广泛的研究关注。然而,体积膨胀和较差的循环寿命仍然阻碍了它们的实际应用。在此,通过对三维有序大孔锰基普鲁士蓝类似物单晶进行硒化处理,制备了一种由碳层修饰的三维(3D)有序大孔双金属(Mn,Fe)硒化物(记为3DOM-MnFeSe@C)复合材料,其含有异质结界面。3DOM-MnFeSe@C呈现出具有增强传质效率的分级多孔结构;MnSe和FeSe颗粒被封装在大孔碳骨架中,这可以显著提高电子导电性并保持结构完整性。密度泛函理论计算表明,MnSe和FeSe之间的异质结界面已成功构建,使得Na能够易于吸附并快速转化,从而促进反应动力学并延长循环寿命。正如预期的那样,3DOM-MnFeSe@C复合材料作为储钠负极表现出优异的倍率性能(在10 A g下为277.6 mA h g)和延长的循环寿命(在2 A g下循环1000次后仍为191.6 mA h g)。通过原位X射线衍射和非原位高分辨率透射电子显微镜表征技术进一步研究了该复合材料的储钠机理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验