Suppr超能文献

微纤维支架引导干细胞管腔发生和脑类器官工程。

Microfibrous Scaffolds Guide Stem Cell Lumenogenesis and Brain Organoid Engineering.

机构信息

Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.

Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, 1030, Austria.

出版信息

Adv Mater. 2023 Oct;35(41):e2300305. doi: 10.1002/adma.202300305. Epub 2023 Sep 8.

Abstract

3D organoids are widely used as tractable in vitro models capable of elucidating aspects of human development and disease. However, the manual and low-throughput culture methods, coupled with a low reproducibility and geometric heterogeneity, restrict the scope and application of organoid research. Combining expertise from stem cell biology and bioengineering offers a promising approach to address some of these limitations. Here, melt electrospinning writing is used to generate tuneable grid scaffolds that can guide the self-organization of pluripotent stem cells into patterned arrays of embryoid bodies. Grid geometry is shown to be a key determinant of stem cell self-organization, guiding the position and size of emerging lumens via curvature-controlled tissue growth. Two distinct methods for culturing scaffold-grown embryoid bodies into either interconnected or spatially discrete cerebral organoids are reported. These scaffolds provide a high-throughput method to generate, culture, and analyze large numbers of organoids, substantially reducing the time investment and manual labor involved in conventional methods of organoid culture. It is anticipated that this methodological development will open up new opportunities for guiding pluripotent stem cell culture, studying lumenogenesis, and generating large numbers of uniform organoids for high-throughput screening.

摘要

3D 类器官被广泛用作可处理的体外模型,能够阐明人类发育和疾病的某些方面。然而,手动和低通量的培养方法,加上低重现性和几何异质性,限制了类器官研究的范围和应用。将干细胞生物学和生物工程的专业知识结合起来,为解决其中的一些限制提供了一个有前途的方法。在这里,熔融静电纺丝技术被用来生成可调节的网格支架,这些支架可以引导多能干细胞自我组织成胚胎体的图案化阵列。网格几何形状被证明是干细胞自我组织的关键决定因素,通过曲率控制组织生长来指导新出现的腔的位置和大小。报道了两种用于将支架培养的胚胎体培养成相互连接或空间离散的大脑类器官的不同方法。这些支架提供了一种高通量的方法来生成、培养和分析大量的类器官,大大减少了传统类器官培养方法所涉及的时间投入和人工劳动。预计这种方法的发展将为指导多能干细胞培养、研究腔发生以及生成大量用于高通量筛选的均匀类器官开辟新的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d8f/7617127/f5bf2103eaee/EMS193196-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验