Suppr超能文献

利用罗勒属植物制备的银纳米颗粒对革兰氏阴性菌的抗菌活性。

Antimicrobial activity of phytofabricated silver nanoparticles using L. against Gram-negative bacteria.

作者信息

Arsene Mbarga Manga Joseph, Viktorovna Podoprigora Irina, Alla Marukhlenko, Mariya Morozova, Davares Anyutoulou Kitio Linda, Carime Bassa Zacharie, Anatolievna Gizinger Oksana, Vyacheslavovna Yashina Natalya, Vladimirovna Zhigunova Anna, Andreevna Smolyakova Larissa, Aleksandrovna Vasilieva Elena, Alekseevich Butusov Leonid, Nikolaïevna Borekhova Marina, Parfait Kezimana, Andrey Vodyashkin

机构信息

Department of Microbiology V.S. Kiktenko, Medical Institute, RUDN University named after Patrice Lumumba, Moscow, Russia.

Research Institute of Molecular and Cellular Medicine, Medical Institute RUDN University named after Patrice Lumumba, Moscow, Russia.

出版信息

Vet World. 2023 Jun;16(6):1301-1311. doi: 10.14202/vetworld.2023.1301-1311. Epub 2023 Jun 13.

Abstract

BACKGROUND AND AIM

Antibiotic resistance, especially in Gram-negative bacteria, is a major public health risk affecting all industries requiring the use of antibiotics, including agriculture and animal breeding. This study aimed to use papaya extracts to synthesize silver nanoparticles (AgNPs) and evaluate their antimicrobial activity against various Gram-negative bacteria.

MATERIALS AND METHODS

Silver nanoparticles were synthesized from the aqueous extracts of papaya seed, root, and bark, with AgNO used as a reducing agent. The phytofabricated AgNPs were analyzed by ultraviolet-visible absorbance, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and photon cross-correlation spectroscopy (PCCS). The disc-diffusion method was used to perform antibacterial analysis, and the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations were determined. We also investigated the antibiofilm activity of AgNPs and attempted to elucidate the potential mechanism of action on ATCC 25922.

RESULTS

Phytofabrication of AgNPs was successful with papaya root (PR-AgNPs) and papaya seed (PS-AgNPs), but not with papaya bark. Silver nanoparticles using papaya root and PS-AgNPs were both cubic and showed maximum absorbances of 2.6 and 0.3 AUs at 411.6 and 416.8 nm wavelengths and average hydrodynamic diameters X50 of 59.46 ± 7.03 and 66.57 ± 8.89 nm, respectively. The Ag in both AgNPs was confirmed by X-ray fluorescence by a distinctive peak in the spectrum at the silver Kα line of 22.105 keV. Both AgNPs exhibited broad-spectrum antimicrobial and antibiofilm activity against all Gram-negative bacteria, and PR-AgNPs were slightly better than AgNPs-PS. The MIC ranged from 16 μg/mL-128 μg/mL and 16 μg/mL-64 μg/mL, respectively, for PS-AgNPs and PR-AgNPs. The elucidation of the mechanism of action revealed interference with ATCC 25922 growth kinetics and inhibition of H-ATPase proton pumps.

CONCLUSION

Papaya seed and root extracts were efficient reducing agents for the biogenic synthesis of AgNPs, with noteworthy antibacterial and antibiofilm activities. Future studies should be conducted to identify the phytochemicals and the mechanism involved in AgNPs synthesis.

摘要

背景与目的

抗生素耐药性,尤其是革兰氏阴性菌的耐药性,是一个重大的公共卫生风险,影响着包括农业和动物养殖在内的所有需要使用抗生素的行业。本研究旨在利用木瓜提取物合成银纳米颗粒(AgNPs),并评估其对各种革兰氏阴性菌的抗菌活性。

材料与方法

以硝酸银为还原剂,从木瓜种子、根和树皮的水提取物中合成银纳米颗粒。通过紫外可见吸收光谱、X射线衍射(XRD)、傅里叶变换红外光谱和光子交叉相关光谱(PCCS)对植物合成的AgNPs进行分析。采用纸片扩散法进行抗菌分析,并测定最低抑菌浓度(MIC)和最低杀菌浓度。我们还研究了AgNPs的抗生物膜活性,并试图阐明其对ATCC 25922的潜在作用机制。

结果

用木瓜根(PR-AgNPs)和木瓜种子(PS-AgNPs)成功合成了AgNPs,但木瓜树皮未成功。使用木瓜根和PS-AgNPs合成的银纳米颗粒均为立方体形,在411.6和416.8 nm波长处的最大吸光度分别为2.6和0.3 AU,平均流体动力学直径X50分别为59.46±7.03和66.57±8.89 nm。通过X射线荧光光谱在22.105 keV的银Kα线处的光谱中出现的一个独特峰,证实了两种AgNPs中的银。两种AgNPs对所有革兰氏阴性菌均表现出广谱抗菌和抗生物膜活性,且PR-AgNPs略优于PS-AgNPs。PS-AgNPs和PR-AgNPs的MIC分别为16μg/mL - 128μg/mL和16μg/mL - 64μg/mL。作用机制的阐明揭示了对ATCC 25922生长动力学的干扰以及对H-ATPase质子泵 的抑制。

结论

木瓜种子和根提取物是生物合成AgNPs的有效还原剂,具有显著的抗菌和抗生物膜活性。未来应开展研究以确定参与AgNPs合成的植物化学物质和机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b560/10421558/2489409e1469/Vetworld-16-1301-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验