Suppr超能文献

解读混合人群中的单核苷酸多态性遗传力。

Interpreting SNP heritability in admixed populations.

作者信息

Huang Jinguo, Kleman Nicole, Basu Saonli, Shriver Mark D, Zaidi Arslan A

机构信息

Bioinformatics and Genomics, Huck Institutes of the Life Sciences, Pennsylvania State University.

Department of Anthropology, Pennsylvania State University.

出版信息

bioRxiv. 2024 Aug 6:2023.08.04.551959. doi: 10.1101/2023.08.04.551959.

Abstract

SNP heritability is defined as the proportion of phenotypic variance explained by genotyped SNPs and is believed to be a lower bound of heritability ( ), being equal to it if all causal variants are known. Despite the simple intuition behind , its interpretation and equivalence to is unclear, particularly in the presence of population structure and assortative mating. It is well known that population structure can lead to inflation in estimates because of confounding due to linkage disequilibrium (LD) or shared environment. Here we use analytical theory and simulations to demonstrate that estimates can be biased in admixed populations, even in the absence of confounding and even if all causal variants are known. This is because admixture generates LD, which contributes to the genetic variance, and therefore to heritability. Genome-wide restricted maximum likelihood (GREML) does not capture this contribution leading to under- or over-estimates of relative to , depending on the genetic architecture. In contrast, Haseman-Elston (HE) regression exaggerates the LD contribution leading to biases in the opposite direction. For the same reason, GREML and HE estimates of local ancestry heritability are also biased. We describe this bias in and as a function of admixture history and the genetic architecture of the trait and show that it can be recovered under some conditions. We clarify the interpretation of in admixed populations and discuss its implication for genome-wide association studies and polygenic prediction.

摘要

单核苷酸多态性(SNP)遗传力被定义为基因分型的SNP所解释的表型变异比例,并且被认为是遗传力的下限( ),如果所有因果变异都已知,则与遗传力相等。尽管其背后的直觉很简单,但其解释以及与遗传力的等效性尚不清楚,特别是在存在群体结构和选型交配的情况下。众所周知,由于连锁不平衡(LD)或共享环境导致的混杂,群体结构会导致遗传力估计值膨胀。在这里,我们使用分析理论和模拟来证明,即使在没有混杂且所有因果变异都已知的情况下,混合群体中的遗传力估计也可能存在偏差。这是因为混合会产生LD,它会导致遗传变异,进而导致遗传力。全基因组限制最大似然法(GREML)无法捕捉到这种贡献,导致相对于遗传力的估计值偏低或偏高,这取决于遗传结构。相比之下,哈斯曼-埃尔斯顿(HE)回归夸大了LD的贡献,导致偏差方向相反。出于同样的原因,局部祖先遗传力的GREML和HE估计也存在偏差。我们将遗传力估计值中的这种偏差描述为混合历史和性状遗传结构的函数,并表明在某些条件下可以恢复。我们阐明了混合群体中遗传力的解释,并讨论了其对全基因组关联研究和多基因预测的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9115/12218721/c0a312128d05/nihpp-2023.08.04.551959v4-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验