Department of Physics, University of Central Florida, 4000 Central Florida Blvd., Orlando, Florida 32816, United States.
Department of Physics, Tuskegee University, 1200 W. Montgomery Rd., Tuskegee, Alabama 36088, United States.
J Chem Inf Model. 2023 Aug 28;63(16):5045-5055. doi: 10.1021/acs.jcim.3c00609. Epub 2023 Aug 14.
The configuration spaces for bimetallic AuPd nanoclusters of various sizes are explored efficiently and analyzed accurately by combining genetic algorithms with neural networks trained on density functional theory. The methodology demonstrated herein provides an optimizable solution to the problem of searching vast configuration spaces with quantum accuracy in a way that is computationally practical. We implement a machine learning algorithm which learns the density functional theory potential with increasing performance while simultaneously generating and relaxing structures within the system's global configuration space unbiasedly. As a result, the algorithm naturally converges onto the system's energy minima while mapping the configuration space as a function of energy. The algorithm's simple design applies not only to nanocluster configurations, as demonstrated, but to bulk, substrate, and adsorption sites as well, and it is designed to scale. To demonstrate its computational efficiency, we work with AuPd nanoclusters of sizes 15, 20, and 25 atoms. Results focus primarily on evaluating the algorithm's performance; however, several physical insights into possible configurations for these nanoclusters naturally emerge as well, such as geometric Au surface segregation and stoichiometric Au minimization as a function of stability.
通过结合遗传算法和基于密度泛函理论训练的神经网络,高效地探索了不同尺寸的双金属 AuPd 纳米团簇的构型空间,并进行了准确的分析。本文所展示的方法为在计算上可行的方式下,以量子精度搜索广阔的构型空间提供了一种可优化的解决方案。我们实现了一种机器学习算法,该算法在不断提高性能的同时,生成并放松系统全局构型空间内的结构,同时保持无偏性。因此,该算法自然会收敛到系统的能量极小值,同时将构型空间映射为能量的函数。该算法的设计简单,不仅适用于纳米团簇的构型,如本文所示,还适用于体相、衬底和吸附位点,并且可以扩展。为了展示其计算效率,我们研究了尺寸为 15、20 和 25 个原子的 AuPd 纳米团簇。研究结果主要集中在评估算法的性能上;然而,也自然出现了一些关于这些纳米团簇可能构型的物理见解,例如作为稳定性函数的 Au 表面的几何分离和化学计量 Au 的最小化。