Suppr超能文献

聚类-MLP:一种用于加速纯纳米团簇和合金纳米团簇全局最小构型发现的主动学习遗传算法框架。

Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters.

机构信息

Chemical Engineering Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15217, United States.

School of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom.

出版信息

J Chem Inf Model. 2023 Oct 23;63(20):6192-6197. doi: 10.1021/acs.jcim.3c01431. Epub 2023 Oct 12.

Abstract

Structural characterization of nanoclusters is one of the major challenges in nanocluster modeling owing to the multitude of possible configurations of arrangement of cluster atoms. The genetic algorithm (GA), a class of evolutionary algorithms based on the principles of natural evolution, is a commonly employed search method for locating the global minimum configuration of nanoclusters. Although a GA search at the DFT level is required for the accurate description of a potential energy surface to arrive at the correct global minimum configuration of nanoclusters, computationally expensive DFT evaluation of the significantly larger number of cluster geometries limits its practicability. Recently, machine learning potentials (MLP) that are learned from DFT calculations gained significant attention as computationally cheap alternative options that provide DFT level accuracy. As the accuracy of the MLP predictions is dependent on the quality and quantity of the training DFT data, active learning (AL) strategies have gained significant momentum to bypass the need of large and representative training data. In this application note, we present Cluster-MLP, an on-the-fly active learning genetic algorithm framework that employs the Flare++ machine learning potential (MLP) for accelerating the GA search for global minima of pure and alloyed nanoclusters. We have used a modified version the Birmingham parallel genetic algorithm (BPGA) for the nanocluster GA search which is then incorporated into distributed evolutionary algorithms in Python (DEAP), an evolutionary computational framework for fast prototyping or technical experiments. We have shown that the incorporation of the AL framework in the BPGA significantly reduced the computationally expensive DFT calculations. Moreover, we have shown that both the AL-GA and DFT-GA predict the same global minima for all the clusters we tested.

摘要

纳米团簇的结构特征是纳米团簇建模中的主要挑战之一,这是由于团簇原子排列的可能构型众多。遗传算法(GA)是一类基于自然进化原理的进化算法,是一种常用于寻找纳米团簇全局最小构型的搜索方法。尽管需要在 DFT 水平上进行 GA 搜索,以准确描述势能面,从而得出纳米团簇的正确全局最小构型,但计算成本高昂的 DFT 评估大量的团簇几何形状限制了其实用性。最近,机器学习势(MLP)作为计算成本较低的替代方案引起了人们的极大关注,因为它们提供了与 DFT 水平相当的准确性。由于 MLP 预测的准确性取决于训练 DFT 数据的质量和数量,因此主动学习(AL)策略已获得显著发展,以避免对大量有代表性的训练数据的需求。在本应用说明中,我们提出了 Cluster-MLP,这是一种实时主动学习遗传算法框架,它使用 Flare++机器学习势(MLP)来加速 GA 搜索纯纳米团簇和合金纳米团簇的全局最小值。我们使用了经过修改的伯明翰并行遗传算法(BPGA)进行纳米团簇 GA 搜索,然后将其纳入 Python 中的分布式进化算法(DEAP)中,这是一个用于快速原型设计或技术实验的进化计算框架。我们表明,在 BPGA 中加入 AL 框架显著减少了计算成本高昂的 DFT 计算。此外,我们还表明,对于我们测试的所有团簇,AL-GA 和 DFT-GA 都预测了相同的全局最小值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2b1/10598790/367576697120/ci3c01431_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验