Rowland Institute, Harvard University, Cambridge, MA 02142.
Institute of Medical Microbiology, Rheinisch-Westfälische Technische Hochschule University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule University, Aachen 52074, Germany.
Proc Natl Acad Sci U S A. 2023 Aug 22;120(34):e2301873120. doi: 10.1073/pnas.2301873120. Epub 2023 Aug 14.
Bacteria navigate natural habitats with a wide range of mechanical properties, from the ocean to the digestive tract and soil, by rotating helical flagella like propellers. Species differ in the number, position, and shape of their flagella, but the adaptive value of these flagellar architectures is unclear. Many species traverse multiple types of environments, such as pathogens inside and outside a host. We investigate the hypothesis that flagellar architectures mediate environment-specific benefits in the marine pathogen which exhibits physiological adaptation to the mechanical environment. In addition to its single polar flagellum, the bacterium produces lateral flagella in environments that differ mechanically from water. These are known to facilitate surface motility and attachment. We use high-throughput 3D bacterial tracking to quantify chemotactic performance of both flagellar architectures in three archetypes of mechanical environments relevant to the bacterium's native habitats: water, polymer solutions, and hydrogels. We reveal that lateral flagella impede chemotaxis in water by lowering the swimming speed but improve chemotaxis in both types of complex environments. Statistical trajectory analysis reveals two distinct underlying behavioral mechanisms: In viscous solutions of the polymer PVP K90, lateral flagella increase the swimming speed. In agar hydrogels, lateral flagella improve overall chemotactic performance, despite lowering the swimming speed, by preventing trapping in pores. Our findings show that lateral flagella are multipurpose tools with a wide range of applications beyond surfaces. They implicate flagellar architecture as a mediator of environment-specific benefits and point to a rich space of bacterial navigation behaviors in complex environments.
细菌通过旋转类似于螺旋桨的螺旋鞭毛在具有广泛机械性能的自然栖息地中导航,这些栖息地的范围从海洋到消化道和土壤。不同物种的鞭毛数量、位置和形状存在差异,但这些鞭毛结构的适应价值尚不清楚。许多物种可以穿越多种类型的环境,例如宿主内外的病原体。我们研究了这样一种假设,即鞭毛结构在海洋病原体中介导了特定于环境的益处,该病原体对机械环境表现出生理适应。除了单个极鞭毛外,细菌在机械上与水不同的环境中产生侧鞭毛。众所周知,这些鞭毛有助于表面运动和附着。我们使用高通量 3D 细菌跟踪技术,在与细菌天然栖息地相关的三种机械环境原型中,定量研究了这两种鞭毛结构的趋化性能:水、聚合物溶液和水凝胶。我们发现,侧鞭毛通过降低游动速度来阻碍在水中的趋化作用,但在两种复杂环境中都能改善趋化作用。统计轨迹分析揭示了两种不同的潜在行为机制:在聚合物 PVP K90 的粘性溶液中,侧鞭毛增加了游动速度。在琼脂水凝胶中,尽管降低了游动速度,但侧鞭毛通过防止被困在孔中,改善了整体趋化作用性能。我们的研究结果表明,侧鞭毛是一种多功能工具,除了在表面上的应用之外,还有广泛的应用。它们表明鞭毛结构是特定于环境的益处的介导者,并指出了在复杂环境中细菌导航行为的丰富空间。