Monteiro Moniellen Pires, Carrillo-Mora Juan Pablo, Gutiérrez Nahuel, Montagna Sofía, Lodeiro Aníbal R, Cordero María Luisa, Marconi V I
Departamento de Física - Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago, Chile.
Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Medina Allende s/n, X5000HUA, Córdoba, Argentina.
Commun Biol. 2025 Apr 25;8(1):662. doi: 10.1038/s42003-025-07811-8.
Bradyrhizobium diazoefficiens is a nitrogen-fixing symbiont of soybean, worldwide used as biofertilizer. This soil bacterium possesses two flagellar systems enabling it to swim in water-saturated soils. However, the motility in soil pores, which may be crucial for competitiveness for root nodulation, is difficult to predict. To address this gap, we fabricated microfluidic devices with networks of connected microchannels surrounding grains. In them, we directly visualise bacterial behaviour in transparent geometries mimicking minimalist soils-on-a-chip (SOCs). We measured the population velocities and changes of direction for two strains: the wild-type and a mutant with only a subpolar flagellum. A detailed statistical analysis revealed that both strains exhibited reduced speeds and increased changes of direction of 180°, in channels of decreasing cross sectional area, down to a few microns in width. Interestingly, while the wild-type strain displayed faster swimming in unconfined spaces, this advantage was negated in the SOCs with the narrowest microchannels. We employed the measured motility parameters to propose a realistic model and simulate B. diazoefficiens confined dynamics being able to reproduce their behaviour, which additionally can be extended enabling further predictions for long time and macro scales. This multidisciplinary work, combining design, microfabrication, microbiology and modelling, offers useful methods to study soil bacteria and may be readily extended to other beneficial/harmful soil species.
慢生根瘤菌是大豆的一种固氮共生菌,在全球范围内用作生物肥料。这种土壤细菌拥有两个鞭毛系统,使其能够在水饱和的土壤中游动。然而,土壤孔隙中的运动性对于根瘤形成的竞争力可能至关重要,但却难以预测。为了填补这一空白,我们制造了微流控装置,其具有围绕颗粒的相互连接的微通道网络。在这些装置中,我们直接观察了细菌在模仿极简土壤芯片(SOCs)的透明几何结构中的行为。我们测量了两种菌株的群体速度和方向变化:野生型和仅具有亚极鞭毛的突变体。详细的统计分析表明,在横截面积逐渐减小至宽度仅几微米的通道中,两种菌株的速度均降低,且180°方向变化增加。有趣的是,虽然野生型菌株在无限制空间中游动速度更快,但在具有最窄微通道的SOCs中,这种优势消失了。我们利用测量的运动参数提出了一个现实模型,并模拟了慢生根瘤菌的受限动力学,该模型能够再现它们的行为,此外还可以扩展,以便对长时间和宏观尺度进行进一步预测。这项结合了设计、微制造、微生物学和建模的多学科工作,提供了研究土壤细菌的有用方法,并且可以很容易地扩展到其他有益/有害土壤物种。